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APPLICATION OF BAYESIAN PROBABILISTIC NETWORKS 
FOR LIQUEFACTION OF SOIL  
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Abstract 

The paper considers the application of Bayesian probabilistic networks (BPN) in liquefaction 
analysis. BPN’s facilitate risk assessment in a generic framework by using indicators to relate 
the generic representation to the specific condition causing liquefaction. A basic introduction 
to BPN is provided and the concept of indicators is applied in accordance with potential site 
specific information. The methodology is then applied to a site located in Adapazari, Turkey, 
where extensive liquefaction problems occurred during the catastrophic 1999 Kocaeli 
earthquake. First the indicators related to soil liquefaction including their probabilistic 
modelling are summarized. For the liquefaction analysis state-of-the-art procedures are 
applied. The example illustrates how BPN’s can be used to assess the probability of 
liquefaction. 
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1 Introduction 
Earthquake risk management constitutes a very complex problem framework. It requires a 
realistic and reliable modelling of the seismic hazard, the soil response including soil failures 
like liquefaction, the structural response, the damage assessment and all possible 
consequences. The tools for the structuring and modelling of such large complex problems 
are fault and event trees. The entire decision problem structure can be modelled by these 
two supplementary analysis tools. The main drawback of these tools however is the 
exponentially growing size of the branches of the trees with increasing number of variables. 
This makes the model awkward and very difficult to communicate to third parties for 
validation purposes. Bayesian probabilistic networks (BPN’s) provide a remedy for these 
drawbacks, as they map the problem framework by a graphical representation of nodes and 
directed links explicitly showing the probabilistic dependence between the nodes and the 
information flow in the model; nodes characterising the uncertain quantities of the problem, 
arrows the causal interrelation between these quantities. Conditional dependencies and new 
evidence may easily included. 
Bayesian probabilistic networks, also called belief networks or probabilistic causal networks, 
have become popular during the last two decades in the research areas of artificial 
intelligence, probability assessment and uncertainty modelling (Pearl 1988). The ideas and 
techniques have gained recognition also in other engineering disciplines and natural 
sciences, especially in problems involving high complexities and uncertainties, see also 

 
1 ETH Zurich, Institute of Structural Engineering (IBK), bayraktarli@ibk.baug.ethz.ch 

1 



 
 

Faber et al. (2002). The description and assessment of natural hazards and the 
quantification of their related risks appears to be a problem for which BPN’s can be a helpful 
tool. In Antonucci et al. (2004) BPN’s are applied to assess hazards due to debris flow, in 
Straub (2005) to natural hazards risk assessment and in Bayraktarli et al. (2005) to 
earthquake risk management. 
A key element in the pursued approach is the quantification of the effect of various types of 
observable information (condition indicators) on the elements of the functional chain of an 
earthquake. These condition indicators have very different characteristics and necessitate 
integrating different expertise into the project. Therefore an interdisciplinary research 
program “Management of Earthquake Risks using Condition Indicators” (MERCI, 2004), 
funded by the Swiss National Science Foundation, is currently working on generic models for 
the management of earthquake risks. These models require also a generic handling of the 
soil response during an earthquake. In the present paper the evaluation of one type of soil 
response, the earthquake induced liquefaction, by a BPN will be discussed. 
During an earthquake, loosely packed water-saturated sediments near the ground surface 
may lose their strength and stiffness as a result of pore water pressure increase. This 
phenomenon, known as liquefaction may cause serious damage to the built environment as 
experienced during the earthquakes in Niigata (1964), Loma Prieta (1989) and Kocaeli 
(1999) (Geoengineer website, 2006). The soil liquefaction is quantified using deterministic 
and probabilistic techniques either based on laboratory tests or empirical correlations of in-
situ index tests with field case performance data. The deterministic empirical correlation in 
using Standard Penetration Test (SPT) proposed by Seed and Idriss (1971) is widely used in 
practice to evaluate the potential for soil liquefaction. A revised version of this so-called 
simplified procedure (Youd et al. 2001) will be applied in this paper to illustrate the 
application of BPN in liquefaction analysis. 
 

2 Bayesian probabilistic networks for risk assessment 
BPN’s constitute a flexible, intuitive and strong model framework for Bayesian probabilistic 
analysis (Jensen 2001). BPN’s may substitute both fault and event trees and can be used at 
any stage of a risk analysis. Due to their mind mapping characteristic, they comprise a 
significant support in the early phases of a risk analysis, where the main task is to identify the 
potential hazard scenarios and the interrelation of events leading to adverse events. BPN’s 
provide a strong tool for decision analysis, including prior analysis, posterior analysis and 
pre-posterior analysis. Furthermore, they also provide a tool for diagnosing systems, i.e. 
identifying the event scenarios, which with the largest likelihood lead to specific adverse 
events of interest. 
 
N  is a Bayesian network triplet ( , , where , )V A P

•  is a set of variables . V , 1,2,3..iv i = .
•  is a set of links showing causal interrelations between the variables. The links 

and the variable set V constitute a directed acyclic graph. 
A
A

• { }( | ) :vP P v v Vπ= ∈ , where vπ stands for the set of parents of v . In words P  is the set 
the conditional probabilities of the all variables given their parents. 

 
It is common to visualise the variables in a BPN as nodes. Two additional elements, decision 
nodes and utility nodes, may be added to a BPN enabling the BPN to solve decision 
problems. Such BPN’s are also known as influence diagrams. A decision node denoted by a 
rectangle shows the alternative actions to be chosen by the decision maker and utility nodes 
visualised by diamonds show the consequences of the chosen action. A BPN may be 
formulated by the following steps, see also Figure 1: 
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Figure 1. A generic BPN with states and probability tables 

• Variables necessary and sufficient to model the problem framework of interest are 
identified. 

• Causal interrelations existing between the nodes are formulated. They are graphically 
shown in terms of arrows connecting variables.  

• A number of discrete mutually exclusive states are assigned to each variable. 
• Probability tables are assigned for the states of each of the variables.  

 
More formally, the BPN maps the joint probability distribution of a considered system. ( )NP V
 

π
∈

=∏( ) ( | )N
v V

P V P v v  (1) 

 

As an example, for the generic BPN in Figure 1 the joint probability is given by: 
 

=( , , , , ) ( ) ( ) ( | , , )NP A B C D U P A P B P C A B D  (2) 
 

The marginal probability of any variable, say variable C in Figure 1, is defined by 
marginalising all variables different from variable C out of the joint probability: 
 

/
( ) ( )N N

V C
P C P V= ∑  (3) 

 

There may be evidence that some of the variables have specific values. For example, the 
variable B in the BPN in Figure 1 may be observed to be in State III. Then the posterior 
probability of any variable in the BPN, for example of variable C is defined as: 
 

=
= =

=
( , StateIII)( | StateIII)
( StateIII)

N
N

N

P C BP C B
P B

 (4) 

 

Very efficient so-called inference engines are available that makes the calculations of Eq.’s 
(2) - (4) tractable (Jensen 2001). 
 

3 Example Application 
For the example application, a site in the city centre of Adapazari/Turkey, which was affected 
by the 17th August, 1999 Kocaeli Mw 7.4 earthquake is chosen. Many buildings in Adapazari 
suffered damage due to liquefaction induced ground settlement during that earthquake. The 
soil profile used in the following analyses is taken from PEER (2000). Figure 2 illustrates the 
soil profile used in the analyses. 
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Figure 2. Soil profile of SPT A-2 considered in the example application (PEER, 2000) 

3.1 Procedure for soil liquefaction analysis 
As indicated in the introduction a revised version of the so-called simplified procedure will be 
used for the liquefaction analysis (Youd et al. 2001). Soil types expected to exhibit no 
susceptibility for liquefaction due to their high fines content and liquid limit are excluded from 
the analysis using the “Modified Chinese Criteria” (Andrews and Martin 2000), see Table 1.  

Table 1. Liquefaction susceptibility according to the “Modified Chinese Criteria” 
 Liquid Limit, LL<32 Liquid Limit, LL≥32 

Fines Content <10% Susceptible to liquefaction Further studies required 
Fines Content ≥10% Further studies required Not susceptible to liquefaction 

 
The limit state function for liquefaction is given by: 
 

  g  (5) σ= ⋅ ⋅ −7.5( ) 0=x CRR MSF K CSR
 

where  is the cyclic resistance ratio for earthquake magnitudes of about 7.5, CS  is 
the cyclic stress ratio, MS  is the earthquake magnitude scaling factor to correct for 
moment magnitudes Mw smaller or larger than 7.5, 

7.5CRR R
F

σK  is a correction factor to extrapolate 
the procedure to layers with overburden pressures larger than 100kPa (Youd et al. 2001). 
The cyclic resistance ratio and cyclic stress ratio is calculated by: 
 

  = + + −
− ⋅ +

1 60
7.5 2

1 60 1 60

( )1 50
34 ( ) 135 200[10 ( ) 45]

N 1
N N

)N

CRR  (6) 

 

where  is the SPT blow count normalized to an overburden pressure of 100 kPa, a 
hammer efficiency of 60% and borehole diameter of 65-115mm. Eq. (6) is valid for (  
values less than 30. For larger values clean granular soils are classified as non-liquefiable. 

1 60( )N

1 60

The cyclic stress ratio is calculated by: 
 

  σ
σ

= ⋅ ⋅ ⋅max
'0.65 vo

d
vo

aCS  (7) R r
g

where  is the maximum acceleration in the soil layer, maxa σvo  and σ '
vo  are the total and 

effective stresses in the middle of the soil layer, and r  is a depth reduction coefficient in 
accordance with Seed and Idriss (1971). 

d
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To implement this procedure into a Bayesian probabilistic network a generic and probabilistic 
approach is required. The soil profile of SPT A-2 is used for illustrating the procedure. The 
density, void ratio, water content and layer thickness for the calculation of the total and 
effective stresses are assumed to be random variables, whereas the remaining parameters 
are treated deterministically.  
A set of acceleration time histories is generated for the soil response analyses. For this 
purpose the attenuation relationship proposed by Boore et al. (1997) for estimating the 
pseudo-acceleration response spectra for the random horizontal component at 5% damping 
is used. 16 pairs of moment magnitudes Mw (5.5, 6.5, 7.0, 7.5), epicentre distances R (10, 
20, 40, 80 km) and site class (rock) are selected for the estimation of the pseudo-
acceleration response spectra. Using a modified version of SIMQKE (Gasparini and 
Vanmarcke 1976) by Lestuzzi (2000) 10 samples of accelerogram time histories for each pair 
of these are generated, resulting in 160 acceleration time histories. 
The 160 acceleration time histories are applied at the bedrock level and propagated vertically 
through the soil layers in the 1D analysis program Shake (Schnabel et al. 1972). Using 
equivalent linear soil properties in an iterative procedure, the soil properties compatible with 
the strains and the acceleration time histories in each layer are calculated. The maximum 
accelerations in each layer are then used in the liquefaction analysis. 

3.2 Probabilistic modelling of soil parameters 
Sources and types of uncertainty in geotechnical engineering can formally be grouped into 
aleatory and epistemic uncertainty (Jones et al. 2002). Aleatory uncertainty represents the 
inherent randomness of the soil properties depending on the spatial variability of the 
property. Epistemic uncertainty represents the erroneous modelling, the lack of information 
and shortcomings in the measurements. The uncertainty from the spatial variability of soil 
parameters in natural soil deposits is not explicitly considered in the present paper; only the 
variation of the layers thicknesses in the considered soil profile is taken into account.  
For the present analyses the uncertainties in the following parameters are considered: 
density, water content, void ratio and layer thickness. For all soil types these random 
variables are assumed to be normally distributed (Lacasse & Nadim 1996). The parameters 
of the distribution are taken from the Swiss Standard SN 670 010b (VSS 1999) published by 
the Association of Swiss Road and Traffic Engineers, where a set of 6000 laboratory tests 
were analyzed and the parameters for each soil type were classified after the Unified Soil 
Classification System. The parameters used in the example application are given in Table 2. 
For the layer thickness the values given in the boring logs are taken as mean values with a 
coefficient of variation of 15%. 

Table 2. Uncertainty of soil parameters used in the analyses 
Soil Type Density [t/m3] Water content [%] Void Ratio [-] 
 Mean Stdv Mean Stdv Mean Stdv 
A 2.04 0.15 5.5 2.5 0.26 0.05 
SP-SM 2.03 0.18 33 9.3 0.60 0.25 
ML 1.99 0.20 36 19.7 0.77 0.51 
ML-CL 2.11 0.11 37 5.3 0.55 0.15 
CL 2.13 0.10 44 5.4 0.55 0.14 
MH-CH 1.76 0.26 44 29.3 1.33 0.63 
CL-CH 2.02 0.24 37 16.6 0.80 0.43 

 

3.3 Estimation of probability of liquefaction 
The limit state function in Eq. (5) is evaluated to obtain the probability of liquefaction by 
Monte Carlo simulations (N=10’000÷10’000’000, depending on the probability of liquefaction 
in the layer) using the uncorrelated normal distributed random variables; layer thickness, 
density, water content and void ratio. The maximum acceleration  values for each layer 
are taken from the one dimensional soil response analysis. The results are given in Table 3.  

maxa
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Table 3. Probabilities of liquefaction for each layer and for each pair of Mw, R 
Mw R  Probability of liquefaction for layer i [%] 

 [km] 1 2 3 4 5 6 7 8 9 10 11 
5.5 10 n.a. 0.00 0.02 n.a. 0.03 0.02 n.a. 0.04 0.04 n.liq 0.04 

 20 n.a. 0.00 0.00 n.a. 0.02 0.01 n.a. 0.01 0.03 n.liq 0.02 
 40 n.a. 0.00 0.00 n.a. 0.01 0.01 n.a. 0.01 0.02 n.liq 0.02 
 80 n.a. 0.00 0.00 n.a. 0.01 0.01 n.a. 0.01 0.01 n.liq 0.02 

6.5 10 n.a. 0.00 0.03 n.a. 14.80 0.05 n.a. 99.95 0.07 n.liq 0.08 
 20 n.a. 0.00 0.02 n.a. 0.17 0.03 n.a. 0.09 0.06 n.liq 0.05 
 40 n.a. 0.00 0.01 n.a. 0.05 0.02 n.a. 0.05 0.03 n.liq 0.04 
 80 n.a. 0.00 0.01 n.a. 0.02 0.02 n.a. 0.02 0.03 n.liq 0.03 

7.0 10 n.a. 11.36 2.46 n.a. 99.93 0.12 n.a. 99.94 0.13 n.liq 8.85 
 20 n.a. 0.22 0.08 n.a. 98.64 0.04 n.a. 99.86 0.06 n.liq 0.06 
 40 n.a. 0.00 0.01 n.a. 0.10 0.03 n.a. 0.11 0.05 n.liq 0.05 
 80 n.a. 0.00 0.01 n.a. 0.04 0.02 n.a. 0.04 0.04 n.liq 0.03 

7.5 10 n.a. 99.95 99.97 n.a. 99.93 99.93 n.a. 99.94 99.95 n.liq 99.22 
 20 n.a. 8.10 3.88 n.a. 99.93 0.09 n.a. 99.95 0.11 n.liq 0.11 
 40 n.a. 0.00 0.02 n.a. 5.31 0.04 n.a. 60.35 0.06 n.liq 0.06 
 80 n.a. 0.00 0.02 n.a. 0.10 0.03 n.a. 0.05 0.03 n.liq 0.03 

* n.a.: SPT number of blows were not available, n.liq.: not liquefiable, since ( >30  1 60)N

3.4 Bayesian probabilistic network analysis 
Figure 3 illustrates the BPN considered for the example application in the present paper. The 
annual probabilities for each moment magnitude Mw (Mw =5.5, 6.5, 7.0, 7.5) are calculated 
using the Gutenberg-Richter magnitude reccurrence relationship (Gutenberg and Richter, 
1944) with recurrence rate parameters corresponding to Anatolian Trough source zone from 
Erdik et al. (1985). The seismic source zone is considered as a point source and the 
occurrence of strong earthquakes is assumed to follow a stationary Poisson process. These 
probabilities form the probability tables for ‘Earthquake magnitude’. The epicentre distances 
are assumed to be R=10 km, 20 km, 40 km and 80 km to the site and are presented by 
‘Earthquake distance’. ‘Soil type’ constitutes the states rock, gravel, sand, silt and clay. 
‘Spectral acceleration’ is conditioned on these three nodes and on ‘Soil response’. ‘Soil 
profile’ constitutes the different layers of the considered bore profile. ‘PGA (Peak Ground 
Acceleration)’ is assumed to be independent of ‘Spectral acceleration’ but dependent on the 
‘Earthquake magnitude’, ‘Earthquake distance’, ‘Soil type’ and ‘Soil profile’. The ‘Modified 
Chinese Criteria’ is implemented as a logical connection in ‘Liquefaction susceptibility’. Its 
conditional probability table depends on ‘Liquid limit (LL)’ with the two states LL<32, LL≥32 
and on ‘Fines content (FC)’ with the two states FC<10%, FC≥10%. The node ‘Liquefaction’ 
comprises the conditional probabilities for liquefaction computed based on the revised 
version of the simplified procedure from Table 3, whereby the states of ‘PGA’ are taken from 
the simulated acceleration time histories. ‘Soil response’ has two states ‘Ground 
amplification’ and ‘Liquefaction’. Conditional on the ‘Spectral acceleration’ and ‘Soil 
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Figure 3. Bayesian probabilistic network for assessing liquefaction of soil 
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response’, the probabilities of being in a predefined damage state form the conditional 
probability tables in the ‘Damage’ node. The conditional probability tables of the nodes 
‘Spectral acceleration’ and ‘Damage’ are taken from Bayraktarli et al. (2005), where the BPN 
for the decision problem of retrofitting or not retrofitting the specified structures is discussed. 
For the BPN analysis the software package Hugin (Hugin 2005) is used. The analysis is 
performed for each layer of the considered soil profile resulting in the probability of 
liquefaction in the node ‘Liquefaction’. The information flows from this node to the distribution 
of damage on the structure on the site. With observations of one or more of the variables the 
updated probabilities can be calculated easily using the BPN. As an example, for different 
Mw’s the probabilities of liquefaction for the soil layers calculated by the BPN are given in 
Figure 4. The sharp change of probability of liquefaction in one layer from one Mw to the next 
indicates that the critical PGA’s are exceeded for in that range of Mw. 
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Figure 4. Probability of liquefaction for different Mw analysed using the BPN 

4 Discussion 
An approach for the evaluation of soil liquefaction by using a Bayesian probabilistic network 
(BPN) is considered. The evaluation of a BPN for liquefaction analysis of a site affected by 
the 17th August, 1999 Kocaeli Mw7.4 earthquake is illustrated in an example. The state-of-
the-art procedure, a revised version (Youd et al. 2001) of the simplified procedure by Seed 
and Idriss (1971) for the calculation of the probability of liquefaction, is implemented into a 
BPN. The uncertainties of the soil parameters density, water content, void ratio and layer 
thickness are taken into account. Probabilities of liquefaction are calculated using Monte 
Carlo simulations.  
In the further work, the spatial variability of the soil parameters and modelling uncertainties of 
the procedures should be considered. Considering spatial variability will give a better 
estimate for the extent of the liquefaction event. Implementing modelling uncertainties will 
enable to track the sensitivity of optimal decision in regard to model choices. Furthermore, 
the correlation structure of PGA and spectral acceleration, the first required for the 
liquefaction analysis, the second for the structural analysis, will be determined.  
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