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Abstract 
 
Liquefaction triggering assessments are typically performed for only individual locations, 
providing little or no information in regard to the expected extent of liquefaction events. The 
present paper proposes a method to quantify the potential extent of liquefaction by accounting for 
spatial dependence of soil properties and potential future earthquake shaking. Random field theory 
and geostatistics tools are used to model soil properties and earthquake shaking intensity; this 
approach facilitates incorporation of measurement results obtained at individual locations within 
the area of interest. An empirical liquefaction triggering criterion is then used to model 
liquefaction occurrence as a function of the random field realizations. The framework components 
are briefly described and an example analysis is performed to illustrate the details of the approach. 
The area of liquefied soil under a building in Adapazari, Turkey, is considered in the example, 
conditional upon soil property measurements obtained from nearby Standard Penetration Tests. 

1. Introduction  

Empirical models for the assessment of soil liquefaction potential are based on soil properties at a 
individual locations. To assess consequences of liquefaction as they relate to civil structures, 
however, it would be helpful to also understand the potential spatial extent of liquefaction events. 
This requires the spatial dependence of soil properties as well as ground motion intensity to be 
quantified and incorporated in an analysis framework. Dependencies within and among these 
properties affect the potential extent of liquefaction, and they also inform the analyst as to the 
uncertainty in soil properties at points near sampled locations where soil properties are understood 
in detail.  

Tools developed in the field of geostatistics are applicable for incorporating spatial dependencies. 
This field has undergone significant development in the past few decades in fields such as mining, 
petroleum engineering and hydrology, where there is a need to infer the spatial dependence of 
underground phenomena from a limited number of samples. The approach has received relatively 
less attention for liquefaction problems, however, so the applicability for this specific problem will 
be considered here.  

Evaluation of liquefaction risk, even at individual locations, requires the use of several engineering 
models. Empirically-developed criteria provide models for the probability of liquefaction 
occurring at a site for given values of the relevant soil properties and ground motion shaking 
intensity. Probability distributions for the needed soil properties can be obtained from published 
studies, measurements obtained at the site, and expert judgment by qualified geotechnical 
engineers (although this is a challenging task in practice). The distribution of ground motion 
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intensity from potential future earthquakes can be obtained from probabilistic seismic hazard 
analysis results.  

The combination of these various models to assess the potential spatial extent of liquefaction is 
explained in this paper. A framework is described that combines available geotechnical, 
geostatistical and seismic hazard models to produce informative assessments of potential 
liquefaction extent. Challenges for implementation lie primarily with obtaining appropriate 
characterizations of soil properties, rather than with the required computations. The approach 
promises to help analysts better understand liquefaction risks at a site, as well as increase the 
amount of insight provided by limited sample data. 

2. Approach 

Assessment of liquefaction requires models from geotechnical engineering and seismology, and 
accounting for spatial dependence requires additional tools from geostatistics. By incorporating all 
of the needed models, as illustrated schematically in Figure 1, a framework can be used to consider 
spatial distribution of occurrence. First, random fields are established to represent the soil 
properties and ground motion parameters of interest. Then a liquefaction triggering criterion is 
evaluated at each location, based on the model parameters specified by the random fields. Finally, 
based on the field models and the liquefaction criterion, a probabilistic assessment of the 
liquefaction realizations may be performed. The individual components of this framework are 
described briefly in this section.  

2.1. Modeling of liquefaction occurrence 

The method chosen used to model liquefaction will determine which soil properties must be 
modeled, so it is useful to consider this model component first. The most common approach for 
modeling liquefaction occurrence in practice uses empirical criteria which relate measured soil 
parameters and observed occurrence (or non-occurrence) of liquefaction during past earthquakes. 
These criteria can be based on a variety of in situ soil properties obtained using various sampling 
methods. The Standard Penetration Test (SPT) is the most common testing method, and data 
obtained using this method is commonly used for modeling (e.g., Cetin et al. 2004; e.g., Youd et 
al. 2001). Alternative models are based on data obtained from the Cone Penetration Test (CPT), 
site shear wave velocity, or other testing methods (see, e.g., Kramer 1996). The framework 
proposed in this paper should be used with probabilistic liquefaction criteria, explicitly including 
model uncertainty, rather than deterministic factor-of-safety criteria, which neglect model 
uncertainty and often include an unquantified level of conservatism. 

Some liquefaction evaluations are based on finite element method approaches that attempt to 
model the physical phenomenon of liquefaction, rather than relying on empirical field 
observations. These models can potentially capture more complex effects such as post-liquefaction 
soil behavior and the effect of nearby structures on liquefaction. These models are not utilized in 
this study, but they have been used in other studies that consider the seismic response of random-
field soil models (e.g., Fenton and Vanmarcke 1998; Popescu et al. 2005). They could be 
incorporated in the approach described here if desired.  

2.2. Probability distribution of soil properties 

Before attempting to characterize the spatial dependence of soil properties it is necessary to first 
characterize the soil properties at a single point in terms of a joint probability distribution. 
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Liquefaction triggering criteria based on SPT data typically require knowledge of soil penetration 
resistance, stress conditions, fines content and soil shear wave velocity.  For criteria based on the 
cone penetration test, soil penetration resistance is measured by a different parameter obtained 
using that testing procedure, but the general approach is the same. Several past studies have 
provided guidance regarding appropriate probability distributions of these soil parameters, for 
various soil types (Fenton 1999a; Fenton 1999b; JCSS 2002; e.g., Jones et al. 2002; Phoon and 
Kulhawy 1999; Phoon et al. 2003). Additional guidance may be available from judgment by 
geologists and geotechnical engineers familiar with the site, and from testing results at the site of 
interest. Guidance may sometimes come in the form of a range of possible values for the 
properties, and those ranges will need to be transformed into probability distributions for the 
approach used here. Empirical criteria are generally based on the soil values at only the critical 
(i.e., most liquefaction susceptible) layer of the soil, so that only a single value is needed for each 
surface location on the site.  

2.3. Spatial dependence of soil properties 

Spatial dependence is used to quantify the relationship between soil properties at multiple site 
locations. This knowledge is used to answer the question, “given knowledge of soil properties at 
one boring, how much is the uncertainty at other locations reduced?” Typically, dependence is 
modeled using a correlation coefficient between the unknown values of a soil property at two 
points, and the correlation decreases with increasing distance between the points (Degroot and 
Baecher 1993). It should be noted that in many cases, the correlation coefficient is actually 
computed for transformed data rather than the original data, as will be explained in more detail 
below. Spatial dependence models are addressed in the literature, but they are less common than 
results for probability distributions of soil properties at a single point (Fenton 1999b; Jaksa and 
Fenton 2000; Uzielli et al. 2005). Characterizing spatial dependence for general cases can also be 
difficult, because the spatial dependence model is dependent upon other modeling assumptions 
such as whether the soil properties are homogeneous. Dependence can estimated using empirical 
data, so datasets containing a large number of soil borings are helpful for developing this 
component of the framework (Uzielli et al. 2005). It is important to note that a linear correlation 
coefficient does not completely describe the stochastic dependence of two random variables, 
except for the case of joint normal distributions, but it is often all that can be practically quantified 
and in many applications it is deemed to be a sufficiently accurate representation of dependence 
(Goovaerts 1997).  

2.4. Observations of soil properties 

On-site tests are a part of many liquefaction assessments. The results, obtained using methods such 
as the SPT, CPT and Spectral Analysis of Surface Waves (SASW), help to identify the geology of 
the site, which, in addition to the sampled values, guides the selection of appropriate soil 
probability distributions discussed above. But the observations also provide more precise 
information about soil properties at the specific locations that were sampled and, due to the spatial 
dependence, increased information about soil properties at nearby adjacent locations. The ability to 
incorporate this information is an important feature of the proposed framework. 

2.5. Ground motion intensity 

Soil properties quantify the resistance of a site to liquefaction, but the loads applied to the site also 
affect the potential occurrence of liquefaction. For assessment of the probability of a site 
liquefying, it is necessary to compute the rates of occurrence of all ground motion intensities of 
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interest. For many empirical liquefaction occurrence models, ground motion intensity is measured 
using a combination of peak ground acceleration (PGA) along with the earthquake’s magnitude 
(M), which is a proxy for the ground motion duration.  

Information regarding recurrence of PGA and M can be obtained using probabilistic seismic 
hazard analysis (PSHA), along with results from disaggregation (Kramer 1996; McGuire 2004). 
Disaggregated PSHA provides rates of exceedance of given levels of PGA along with the 
conditional distribution of causal earthquake magnitudes associated with exceedance of each PGA 
level—this can be converted into joint rates of occurrence of discretized PGA and M values 
(Bazzurro 1998, p195). An example of this joint density is shown in Figure 2, as obtained for a site 
in Los Angeles, using a site-specific hazard analysis. Standard PSHA provides the needed joint 
density for only a single location. Ground motion intensities can with reasonable accuracy be 
assumed to be perfectly dependent over scales of a few hundred meters, but for regional 
assessments over scales of kilometers, spatial variation will need to be considered (Wang and 
Takada 2005).  

2.6. Spatial distribution of liquefaction occurrence  

Liquefaction criteria can often be formulated as limit state functions referring to soil properties at a 
single location (see, e.g., Equation (1) below). Thus, at each location, it is possible to compute a 
probability of liquefaction. The ground motion intensity and soil properties at nearby locations are 
likely to be dependent, however, and so it may also be of interest to quantify the regions of 
potential liquefaction. The vector u designates the coordinates of a location in the site, and at each 
location u, the limit state function  takes a value, depending upon the values of the model 
parameters X at that location (one such function will be discussed in detail below). Because the 
model parameter values such as soil properties are spatially dependent, the values of  are 
also spatially dependent. Values of  less than 0 indicate liquefaction, and so regions where 

 is less than zero are regions where liquefaction will occur. Because the model parameters, 
and thus , may not (or can not) be known with certainty, they are best expressed as random 
variables. The spatial distribution of these random variables can be considered using random fields 
techniques (Fenton 1990; Vanmarcke 1983). In this view, regions of liquefaction correspond to 
excursions of random fields: a relatively well-studied topic. 

( , )g X u

( , )g X u
( , )g X u

( , )g X u
( , )g X u

Two primary approaches are available for considering excursions of random fields. The first 
approach uses analytical formulas obtained using random fields theory (Adler 1981; Faber 1989; 
Vanmarcke 1983). Under certain conditions, closed form equations for some properties of  
can be obtained. Nearly all results have been obtained for cases where  is a Gaussian field 
(i.e., all sets of points in the field are defined by joint Gaussian distributions), or a type closely 
related to a Gaussian field. Some stationarity restrictions are generally also required. Assuming 
these requirements are met, results can be obtained for the expected number of excursions in a 
region and the expected area of each excursion. The probability of an excursion at a site can also 
be computed, although this is a limiting value for low excursion probabilities (Adler and Taylor 
2006). Note that these results are for excursions above some threshold value, but the liquefaction 
problem can be easily formulated in this way by considering excursions of  above zero 
rather than excursions of  below zero. Analytical solutions are appealing because of their 
ability to explicitly provide a relationship between model parameters and computed values, but it 
is not clear whether the required assumptions will be met for typical liquefaction assessment 
problems. Further, this approach does not easily allow for incorporation of observed values at 
individual locations obtained by soil sampling, which is an important part of practical liquefaction 
susceptibility evaluations.  

( , )g X u
( , )g X u

( , )g− X u
( , )g X u
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The second approach for incorporating spatial variability is to use Monte Carlo methods to 
simulate potential realizations of the random field  that are consistent with the random 
variable characterizations of all input variables, account for spatial dependence of the random 
variables, and are compatible with observed values obtained by sampling. The field of geostatistics 
considers approaches of this type (Goovaerts 1997). The assumptions required for this approach 
tend to be much less restrictive than with the random fields approach, and it has the important 
advantage (for this application) of incorporating observed data values at sampled locations.  The 
relative disadvantage is that no analytical equations for excursion properties are available and, as 
with any Monte Carlo approach, the computational expense will be greater. Efficient public-source 
algorithms are available, however, and computational expense associated with generating the 
simulations is often much less than the expense associated with analyzing the results, as is the case 
here (Deutsch and Journel 1997). Note that in some applications considering spatially random soil, 
Monte Carlo simulations are performed in the frequency domain—this approach has some 
desirable features, but it is not able to incorporate observed values and so it not considered further 
here. 

( , )g X u

3. Example Application and Algorithmic Details 

To illustrate the approach and provide some algorithmic details, the probabilistic modeling of 
liquefaction at an example site in Adapazari, Turkey, is considered. This city experienced 
liquefaction failures during the 1999 Mw 7.4 Kocaeli earthquake, and extensive post-earthquake 
investigations have produced a large set of soil borings that are now available for analysis (Bray 
and Rodríguez-Marek 2004). A small individual site in this city, shown in Figure 3, is considered 
here. Of particular interest is the probability that a specified fraction of the area under one of the 
buildings will liquefy during a future earthquake. Results from four SPT tests are available and are 
used to constrain the uncertainty in soil properties at other locations within the site.  

3.1. Soil properties and liquefaction criterion 

The SPT-based empirical liquefaction criterion proposed by Cetin et al. (2004) is used for this 
example. It can be expressed using the following limit state function 

( )'
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'
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= = + −
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where 1,60N  is the corrected SPT blow count, eq  is the equivalent cyclic stress ratio, CSR M  is the 
moment magnitude of the earthquake, FC  is fines content, '

vσ  is effective vertical stress, and Lε  
is a random variable representing model uncertainty. In the above notation, X was used to refer to 
the vector of these variables. Function values of less than zero indicate occurrence of liquefaction. 
Given that some or all of the model parameters will be not perfectly known (and that the exact 
value of Lε  is never known) it is not possible to make a deterministic prediction of liquefaction 
occurrence. By characterizing the uncertainty in the predictor variables, however, one can compute 
the probability of liquefaction.  

To evaluate Equation (1), a few further relationships are needed. The calculation for equivalent 
cyclic stress ratio is 
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where g is the acceleration of gravity, vσ  is total vertical stress, and dr  is the nonlinear shear mass 
participation factor. A variety of models have been proposed for d , but the model of Cetin et al. 
(2004) is adopted here, as it was used in the development of the above criterion 

r

*
,12m

*
,12m

*
max ,12m

0.341( 0.0785 7.586)

*
max ,12m

0.341(0.0785 7.586)

23.013 2.949 0.999 0.0525
1

16.258 0.201
23.013 2.949 0.999 0.0525

1
16.258 0.201

s

d

s

w s
d V

d r
w s
V

a M V

er
a M V

e

ε
− + +

+

⎡ ⎤− + + +
+⎢ ⎥

⎢ ⎥+⎣=
⎡ ⎤− + + +
+⎢ ⎥

⎢ ⎥+⎣ ⎦

⎦ +  (3) 

where  is the representative shear wave velocity over the top 12m at the site, and 
dr

*
,12msV ε  is a 

Gaussian random variable representing model error. Equation (3) is only valid when the critical 
liquefaction layer is in the top 20m, as is always the case in this example, but Cetin et al. (2004) 
provide another equation for depths greater than 20m.  

The evaluation of liquefaction triggering for a single point thus requires the evaluation of 
Equations (1) through (3), and thus the input parameters in these equations must be modeled as 
random fields. The parameter models have been used in this calculation, based on empirical 
observations at and around the site, and literature guidance where appropriate. 

To simplify the illustration here, a single soil layer is assumed to be the critical liquefaction 
susceptible layer for the entire site.  

Cetin et al. (2004) specify the following distributions for the model errors: Lε  has a Gaussian 
distribution with a mean of zero and a standard deviation of 2.7, and 

dr
ε  is Gaussian with zero 

mean and standard deviation equal to  

0.85

0.85

0.0198 if 12m

12 0.0198 if >12mrd

d d

d
εσ

⎧ ⋅ ≤⎪=⎨
⋅⎪⎩

 (4) 

where d is the depth of the critical liquefaction susceptible layer.  

Other random variables for soil properties were defined as follows: the distribution of N1,60 was 
defined by an empirical distribution of measured values from throughout the city (it had a mean of 
6.5, standard deviation of 5.6, and was strongly skewed to the right). Note that homogeneity has 
been assumed in order to estimate the probability distribution from a sample of measurements. 
Average shear wave velocity, ; was deterministically defined as 150 m/s, on the basis of 
spectral analysis of surface waves data at the site (Bray and Rodríguez-Marek 2004). Fines content 
was modeled as beta distributed with parameters a=2.9 and b=7.3 estimated from a maximum 
likelihood fit to 33 measured values throughout the city.  

*
,12msV

As described earlier and illustrated in Figure 2, the joint rate density of PGA and M (i.e., the joint 
probability density function multiplied by a rate of occurrence), is obtained from the results of a 
site-specific probabilistic seismic hazard analysis. The discrete numerical representation of this 
distribution will be utilized directly for these properties, rather than a parametric distribution. 
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For the purposes of illustration, all random variables except 1,60N  were assumed to be perfectly 
dependent at the spatial scale of Figure 3 (i.e., the variables were assumed to take the same value 
at each point in the example site). The spatial dependence of 1,60N  was treated more rigorously, as 
explained in the following section. 

3.2. Spatial dependence of soil properties 

The mean value of 1,60N  is assumed to be known and constant throughout the study site (prior to 
consideration of measurements from nearby samples). This assumption, believed to be reasonable 
here, allows for the use of so-called Simple Kriging when developing estimates of the joint 
probability distributions at multiple points in the site. Other kriging approaches allow for local 
variations in mean values, or for mean values which vary smoothly over the study site, and could 
also be utilized within this framework if deemed appropriate.  

The stochastic dependence between soil properties at any two points is modeled using a covariance 
function. For Gaussian data, this fully describes joint dependence between properties at two points, 
and the analytical equations are very tractable. The soil properties do not necessarily have 
Gaussian distributions, however. In order to take advantage of the desirable properties of 
multivariate Gaussian models, the data of interest is transformed using a normal-score mapping. 
To perform this transform, the complimentary distribution function (CDF) of the true soil values is 
generated (using either an empirical CDF from observed data values or the CDF corresponding to 
an assumed or fitted probability distribution). Each potential value of the soil property is then 
mapped to a value such that the CDF of the original soil property has the same fractile value as the 
transformed value does with regard to a standard Gaussian CDF. This is expressed mathematically 
by  

( )1 ( )z F−=Φ y  (5) 

where y is the original data from a distribution represented by the CDF F(y),  is the inverse 
of the standard Gaussian CDF and z is the transformed data. This transformation by definition 
produces variables that marginally have a standard Gaussian distribution. After verifying that the 
transformed data is reasonably represented by a multivariate Gaussian distribution (Goovaerts 
1997, p271), this transformed data is used for statistical estimation and simulation. By inverting 
Equation 

1( )−Φ ⋅

(5) with the simulated values, one obtains simulated data having the originally specified 
marginal distribution. Other algorithmic details are provided in detail elsewhere (Deutsch and 
Journel 1997; Goovaerts 1997).  

The normal-score transformed data is then used to estimate spatial dependence, using an empirical 
semivariogram (Goovaerts 1997). The semivariogram, denoted ( )γ h  is equal to half of the 
variance of the increment in data points separated by a distance h 

[1( ) ( ) ( )2Var Z Zγ = −h u u ]+h  (6) 

where Z(u) is the distribution of the (normal-score-transformed) random variable at location u. 
The vector distance h accounts for both length and direction. Isotropy is assumed for this 
application, so that the semivariogram is a function of separation length ( | ) only, but if 
appropriate the semivariogram can be a function of orientation as well. This semivariogram is 
often used in geostatistics instead of a covariance, because it requires second-order stationarity of 
only the increments and not the underlying process, but the two can be used interchangeably in 

|h
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nearly all applications. Here a semivariogram function of the following form was chosen for the 
corrected SPT blow count, 1,60N  

( ) ( )31.5 0.5 if 2525 25( )  
1 i

h h hh
h

γ
⎧ −⎪=⎨
⎪ >⎩ f 25

≤  (7) 

where h is the (directionally independent) scalar separation length in units of meters.  This 
functional form is referred to a spherical model. Basic tools for empirical semivariogram analysis 
are vailable in many GIS software packages, as well as stand-alone geostatistics tools (e.g., 
Stanford 2006).  

Once spatial dependence of the considered soil parameters has been defined, realizations of the 
soil properties can be generated using a sequential simulation approach. Consider the example site 
from Figure 3. Soil properties are desired for a discretized field of 120 x 200 elements, each with 
dimension 0.25 meters x 0.25 meters. Thus, the goal is to generate joint realizations of 1,60N  
values for these 24,000 elements, consistent with the observed marginal distributions and spatial 
dependence of this property. 

The sequential simulation approach is appealing because it is easy to generate samples at a single 
element, conditional upon the values that sampled (or previously simulated) elements at 
surrounding locations take. Thus, the joint realizations of the 1,60N  values at the site of interest can 
be generated using a series of successive conditional simulations (Goovaerts 1997). First, the 
conditional distribution at an arbitrary unsampled location, u1, is determined, conditional upon 
values of the originally sampled data points. Because the data has been normal-score transformed, 
this conditional distribution is easy to compute. The joint distribution of Z1 and the values of the 
sampled data points is given by  

1

21 22

0 1
,

orig

Z
N
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

Σ
Z 0 Σ Σ∼ 12

⎟⎟  (8) 

where  denotes that the vector of random variables has a joint normal distribution with 
mean values  and covariance matrix . The vector orig  represents the original data values at 
the sampled locations, and 0 is a vector of zeros having the same size as orig  (i.e., the mean 
vector, which is equal to zero in this case because of the normal-score transform). The covariance 
matrix is dependent upon the locations of the original and simulated data points; each element of 
the matrix can be computed by evaluating Equation 

( , )N μ Σ∼
μ Σ Z

Z

(7), noting that the covariance between 
locations with a separation distance h is equal to 1 ( )hγ− . Note that all variances are equal to 1 
because of the normal-score transform. Given this model for the joint distribution, the distribution 
of Z1, conditional upon the original data points, is given by 

( ) ( )1 1
1 12 22 12 22 21| ,  1origZ N − −= ⋅ ⋅ − ⋅ ⋅Z z Σ Σ z Σ Σ Σ∼  (9) 

where z is the vector of 1,60N  values at the sampled locations. Note that orig  is a random variable 
representing our model for uncertain soil parameters prior to sampling, and the sampling 
procedure reveals their values z. A value for Z1 is simulated from this conditional distribution, and 
this value is then treated as a fixed data point for later simulations at other locations (i.e., Z1 is 
included in the vector  of Equation 

Z

origZ (8) for the subsequent simulations of Z2, Z3, …).  
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The process is repeated at each location in the region, and at each location a conditional 
distribution is computed based on the values of the original data points plus the previously 
simulated data points. Once values have been simulated for all locations, the resulting field can be 
transformed back to the original probability distribution by inverting Equation (5) for each 
location in the field (i.e., by performing the inverse of the normal-score transform). The resulting 
set of values represents one realization of the soil properties at the site of interest. The simulated 
field will always agree with observed values at sampled locations, and at other locations it will be 
consistent with the specified stochastic properties of the field. 

Many generalizations of this basic approach have also been developed. One extension that may be 
of interest for liquefaction problems is the simulation of random fields for correlated parameters. 
Once the dependence between the two parameters has been estimated, a procedure similar to the 
one above is used, where each location in the site is visited, but now a vector containing each 
parameter of interest is simulated, conditional upon the values of parameters previously observed 
or simulated. The approach is not used here, but it will be easily incorporated in future work using 
this framework.  

A few issues relating to the practical implementation of this approach should be noted briefly. 
Mathematically, the order in which values for each location are simulated is not important, but to 
ensure sufficient variety among a finite number of samples, usually the order of locations is 
randomized and a different order is used for each sample. Also, note that when simulating the last 
value in the field, Equation (9) implies that all 23,999 previous values should be used for 
conditioning, and this requires inversion of a 22  covariance matrix with size 23,999 x 23,999. In 
practice, however, the effect of distant data points is ‘screened’ by the influence of the closest 
data. Thus the number of conditioning points can be significantly reduced, which decreases the 
computational expense of the procedure without practically affecting the resulting conditional 
distribution. These and other implementation issues are addressed by Goovaerts (1997). An 
implementation of the algorithm, which addresses these and other practical issues, is available as 
part of the open-source GSLIB software package (Deutsch and Journel 1997). Example 
simulations of N1,60 values generated using this approach and software package are shown in 

Σ

Figure 4. In Figure 5, the mean and standard deviation of 1000 simulations generated using this 
method are shown. In Figure 5b, it can be seen that the standard deviation of N1,60 values is lowest 
near the sampled locations, reflecting the effect of spatial dependency. In the next section these 
simulations of soil properties will be used to evaluate liquefaction phenomena of engineering 
interest.  

3.3. Probability of liquefaction for a given ground motion intensity 

To perform the evaluation of liquefaction occurrence, the procedure illustrated in Figure 1 is used. 
The site of interest is divided into discrete cells. For each soil or ground motion property used in 
Equation (1), a matrix of values is generated representing that variable’s value at each cell. When 
measurements of the property are available at some locations, then the measured values are input 
into the matrix, and the remaining cells are simulated conditional on those values, using the 
approach described above. Some variables, such as earthquake magnitude, will take the same value 
in each cell, while others will take different values in each cell. The illustrations in Figure 4 are 
simply graphical displays of these matrices. Some of the variables can also be specified 
deterministically, if their uncertainty is not expected to affect the results.  

Once all the matrices are generated, Equation (1) can be evaluated at each location in the site, to 
determine whether liquefaction has occurred at the given location and for the given realization of 
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model parameters. By repeating this simulation and evaluation procedure multiple times, the 
probabilistic behavior of the extent of liquefaction can be evaluated. To illustrate, example 
evaluations of liquefaction extent are shown in Figure 6. To generate Figure 6, a magnitude 7.4 
earthquake with a PGA of 0.3 g was assumed; variation in ground motion intensity will be 
considered below. The plotted examples correspond to the N1,60 values shown in Figure 4, but 
there is not a one-to-one mapping between the two pictures because of the uncertainty in the other 
model parameters, which were also simulated to generate Figure 6.  

The graphical illustrations are interesting, but they must be summarized if a large number of 
simulations are to be considered. Any function of interest can be evaluated for each of the 
simulations, and if the function output is a scalar then it can be easily summarized numerically or 
graphically. For example, liquefaction occurrence under Building A1 may be of interest. Then it is 
simple to define a variable Y representing the fraction of liquefied area under Building A1, and 
measure the liquefied area associated with each Monte Carlo simulation. This can be formulated 
mathematically using the following equation 

( )( )( | , ) ( | , ) ( )P Y y pga m I h pga m y f d> = >∫ η
η

g η e e  (10) 

where ( | , )pga mg η  is the limit state function from Equation (1), evaluated for PGA=pga and 
magnitude=m, but now written in bold to denote that it is a vector output corresponding to the 
24,000 ( | , )pga mg η  values at the site. The random variable  represents the vector of all input 
soil variables at each location in the site, and  is the joint probability density function of the 
variables. The function  produces a scalar output for a given realization of liquefaction extent; 
in this example  is the fraction of liquefied area under Building A1. The distribution of values 
that  takes is represented by the random variable Z, and the indicator function  takes 
value 1 if , and 0 otherwise. 

η
( )fη e

( )h ⋅
( )h ⋅

( )h ⋅ ( ( )I h y⋅ > )
y( )h ⋅ >

Evaluating Equation (10) involves considering all possible realizations of soil properties  at the 
site, but numerical integration is not possible because  is very high dimensional (i.e., it contains 
4 soil properties ∗  24,000 locations in this example). For this reason, the random field simulation 
approach described above is used to evaluate this integral. The results from this calculation are 
shown in 

η
η

Figure 7. For the given earthquake loading and soil property distributions, there is 
approximately a 50% probability that some portion of the soil will liquefy, but only a 25% 
probability that more than 50% of the area under the building will liquefy. Thus, the implied 
reliability of the building with respect to liquefaction is dependent upon the liquefied area which is 
required to cause building failure.  

3.4. Incorporating multiple ground motion intensity levels 

The result in Figure 7 was obtained by assuming that a magnitude 7.4 earthquake occurred and 
caused a peak ground acceleration of 0.3 g. But without knowing the probability that this event, 
and others, will occur, it is difficult or impossible to evaluate whether this performance is 
acceptable. For this reason, ground motion hazard is incorporated in the analysis. The mean rate 
density illustrated in Figure 2 provides the joint probability density function of magnitude and 
PGA, multiplied by the rate of occurrence of any considered event. The most direct way to 
incorporate this information is to sample PGA and M values from this joint distribution, and use 
them in the Monte Carlo scheme discussed in the previous section. The difficulty with this 
approach is that events with small M and/or PGA values are orders of magnitude more likely to 
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occur than the largest events, and so the great majority of simulations will be for small events. The 
alternative approach used here, which addresses this shortcoming, is to use Monte Carlo 
simulation for the soil properties and numerical integration for the ground motion intensity.  

The first step in the proposed approach is to perform an evaluation conditional upon a given PGA 
and M value, as was done in the Equation (10). To complete the evaluation, one must then 
consider the entire range of relevant PGA and magnitude values using the following equation 

,( ) ( | , ) ( , )d dPGA M
PGA M

Y y P Y y pga m MRD pga m pga mλ > = >∫ ∫  (11) 

where  comes from Equation ( | , )P Y y pga m> (10) and , ( ,PGA M )MRD pga m  is the mean rate density 
of PGA and M, as illustrated in Figure 2. By integrating over all PGA and M values using the total 
probability theorem, it is possible to obtain ( )Y yλ > , the rate of exceedance of the variable of 
interest, Y, over some specified threshold value y. There are only two scalar variables to integrate 
over in this case, so numerical integration is feasible. Results from Equation (11) are shown in 
Figure 8. The figure was generated using the soil properties model discussed above, and then 
considering 200 PGA/M combinations in the numerical integration of Equation (11): 20 PGA 
values and 10 M values. Although ground motions in the intensity range of interest occur 
approximately once every 8 years, some level of liquefaction under the building occurs only once 
every 50 years approximately. Liquefaction of the total area under the building is predicted to 
occur approximately once every 100 years. While these results depend upon the hypothetical 
random variable assumptions used here for illustration, they nonetheless illustrate the potentially 
useful information that could be obtained using the approach. 

This combination of numerical integration and simulation, which is similar to the stratified 
sampling Monte Carlo technique, is useful in this case because the ground motion intensity 
variables contribute significantly to variability in the final output, and a large set of other 
parameters cannot be integrated over numerically (Gentle 2003).  

4. Discussion 

The framework described above has great potential for describing the spatial distribution of soil 
liquefaction. Significant challenges remain, however, with respect to modeling assumptions and 
practical estimation challenges. The model for spatial dependence of soil properties depends solely 
on the correlation coefficient between normal-score transformed values. This approach has been 
seen to provide good results in a variety of mining and petroleum engineering applications 
(Goovaerts 1997), but its validity should still be verified when possible. Probabilistic properties 
such as ergodicity and homogeneity should also be considered carefully before a model is assumed 
(Rackwitz 2000). The specification of which parameters are ergodic and non-ergodic will be 
important for test planning, and non-ergodicity of parameters may cause serious difficulties for 
parameter estimation. Note also that in the above approach, all probabilistic parameters are 
assumed to be known with certainty (e.g., the soil parameters are random variables, but their 
means and variances are assumed to be perfectly known). In practice this will not be the case, 
because the distribution parameters will be estimated from expert judgment and/or finite data 
samples. Uncertain probabilistic parameters can be incorporated by performing the above 
calculations conditional upon the probabilistic parameters, and then considering all possible values 
of the probabilistic parameters through another loop of either numerical integration or Monte 
Carlo simulation to randomize the probabilistic parameter values.  
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A further challenge for random field characterization is the presence of soil layers. If the soil is 
composed of several discrete layers with significantly differing properties, then modeling may 
become more complicated. Empirical liquefaction criteria often depend only upon soil values from 
the most susceptible layer. In the example calculation above, measured soil values in critical layers 
appeared to be well modeled by assuming that it all came from the same population, but this 
conclusion will likely not hold for all other sites. Improved methods for dealing with layered, or 
otherwise structured, random fields are in active development (e.g., Krishnan and Journel 2003), 
but their applicability for this problem has yet to be determined. In particular, approaches of the 
type cited require a training image which provides a representation of the phenomenon being 
studied, and it may not be feasible to develop a reasonable training image for soil layering in many 
cases without performing extensive sampling. Modifications to the model used above should 
nonetheless be considered if they are deemed important and can be characterized. 

The use of empirical liquefaction criteria with the framework, while appealing because it is simple 
and used often in practical evaluations, has some weaknesses. Empirical models generally claim to 
address only the initial triggering of liquefaction and not provide information about post-triggering 
behavior—although it has been suggested that some criteria may also indicate liquefaction severity 
(Iwasaki et al. 1978; Toprak and Holzer 2003). The physical process of interest is caused by 
buildup of pore water pressure due to dynamic excitation, and liquefaction of soil at one location 
will generally affect the behavior of the surrounding soil—this may be an important phenomenon 
when modeling the spatial extent of liquefaction. Empirical modeling of interactions between 
structures and potentially liquefiable soil has also received somewhat limited attention (Rollins 
and Seed 1990). Models which use finite element analysis to model liquefaction promise to 
address this issue more completely (Fenton and Vanmarcke 1998; Steve Koutsourelakis 2002), but 
also require more computational expense and analyst time to model the site. The authors are not 
aware of any studies of this types which consider spatially variable soil models that are conditional 
upon nearby observed values. Finite element models could be used in the above framework, after 
several modifications were made. First, the random fields for the soil would need three-dimensions 
rather than the two-dimensions used above: this poses no problems for the geostatistics algorithms, 
but estimating and specifying the needed random field parameters will be more challenging. 
Second, ground motion time histories will be needed to represent the ground motion input, rather 
than just PGA/M values—this will make it more difficult to consider all possible ground motions, 
and will likely prohibit the use of the proposed stratified sampling technique to reduce 
computational expense. Finally, spatial variability of ground motion will require more careful 
consideration for small sites because incoherence of the ground motions will need to be 
considered, and incoherence occurs at smaller spatial scales than does variability of the peak 
ground acceleration values needed above. The extent to which these additional challenges will 
limit the use this method with finite-element-based evaluations is not yet known. 

Geotechnical engineering assessments often must incorporate information from varying sources 
and of varying quality, and this framework is no different. In the example application, only SPT 
data was used, and further work is needed to simultaneously incorporate other data sources such as 
nearby CPT tests. This task is challenging because the different information sources will generally 
not describe the same soil properties, and liquefaction criteria based on the various soil properties 
may not be consistent.  

Finally, it is relevant to note that liquefaction is only one of several mechanisms by which 
earthquake ground motions can cause an engineering system to fail. A structure may fail even if 
the soil does not liquefy, and the interaction between soil response and structural response is 
sometimes important as well. In order to make fully informed decisions for managing liquefactions 
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risks, it would be helpful to consider a system which incorporates all potential failure mechanisms 
(e.g., structural collapse, liquefaction, bearing failure due to soil-structure-interaction). A number 
of active research fields are aiding in progress towards this goal.  

5. Summary 

A framework has been proposed for evaluating occurrence of liquefaction probabilistically, 
conditional upon observations of soil properties obtained from site samples. The framework 
incorporates several model components that are rarely used together. Geostatistics tools are used to 
model uncertain soil properties, conditional upon observed values obtained from samples at a few 
locations in the area of interest. Probabilistic seismic hazard analysis is used to compute the 
distribution of intensity of future ground motion shaking. An empirical liquefaction triggering 
criterion is used to model liquefaction occurrence as a function of soil properties and ground 
motion shaking. These model components are all available presently, although they have been 
developed independently and have not been previously combined in the form seen here.  

The numerical procedures have been outlined to demonstrate the feasibility of the proposed 
approach. Software tools for seismic hazard analysis and geostatistics facilitate the needed 
computations, and allow calculations of this type to be performed without great effort. Estimating 
the needed probability distributions for soil properties at an arbitrary site will likely prove the 
greatest challenge for implementation of this approach.  

By considering treating soil properties, ground motion shaking and liquefaction triggering 
probabilistically, this approach allows for a more complete evaluation of liquefaction risk than is 
possible using conventional criteria. The simultaneous consideration of random (unknown) soil 
properties and random future earthquake shaking is an improvement over many current 
assessments, which only consider a single level of ground motion intensity from a scenario 
earthquake. By accounting for a range of possible ground motions, annual rates of liquefaction can 
be computed, making it possible to produce design projects that have uniform levels of risk. 
Further, by considering spatial dependence of soil properties, the extent of liquefied area under a 
building can be characterized and used for decision making. With these assessment approaches, 
progress can be made towards considering costs and benefits explicitly when making engineering 
decisions regarding liquefaction risk.  
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Figure 1: Schematic illustration of the procedure for evaluating the extent of soil liquefaction as a function 

of random fields of soil properties and other model parameters.. 

 

 
Figure 2: Example mean rate density of PGA and magnitude. 
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Figure 3: Example site in Adapazari (adopted from Bray et al. PEER website)  

 
Figure 4: Three conditional simulations of corrected SPT blow count (N1,60) values. 
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(a)  

(b)  
Figure 5: (a) Mean, and (b) standard deviation, of simulated N1,60 values. 

 
Figure 6: Locations of liquefaction triggering, as computed from the conditional simulations of site soil 
properties, and given a Magnitude 7.4 earthquake with a PGA of 0.3 g. Liquefied regions are shaded. 
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Figure 7: Probability of exceedance versus fraction of the area under Building A1 that liquefies, given a 

Magnitude 7.4 earthquake with a PGA of 0.3 g. 

 
Figure 8: Rate of exceedance versus fraction of the area under Building A1 that liquefies, considering all 

possible ground motion intensities as specified by the ground motion hazard.  
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