Seismic Risk Modelling: Do Insurances and the Scientific Community talk about the same? D. Hollnack, A. Allmann, A. Smolka, M. Spranger MunichRe - Geo

28th August 2006

From "Aim of the MERCI workshop":

"The potential of synergy between the present research initiatives by exchange of research ideas, results, data and tools is tremendous and could significantly improve future developments in the area. However, a prerequisite for this is that a certain common basis for the underlying modelling is established and that the communication between the involved research groups is strengthened."

2

Why are university risk models only used for a very limited extend in insurance business?

- EQ models for insurances have a kind of standard which meets the requirements of the business.
- There seam to be misunderstandings about the possibilities and requirements of insurances.
- Do we use the same language?

Stan Kaplan's Theorems of Communication

From the plenary Address at the 1996 Meeting Society for Risk Analysis

Theorem 1: 50% of the problems in the world result from people using the same words with different meanings.

Theorem 2: The other 50% comes from people using different words with the same meaning.

4

Usage of the Word RISK

Jardine and Hrudley, 1997. "Mixed Messages in Risk Communication"

6

Definition of Risk

- Total Risk = Impact of Hazard * Elements at Risk * Vulnerability of Elements at Risk (Blong, 1996)
- Risk = Probability * Consequences

(Helm, 1996)

Risk = Hazard * Vulnerability * Value (of threatened area), Preparedness

(De La Cruz-Reyna, 1996)

Risk_(total) = Hazard * Elements at Risk * Vulnerability

(Granger et al., 1999)

Risk is "Expected Losses (of lives, persons injured, property damaged, and economic activity disrupted) due to a particular hazard for a given area and reference period.
 Based on mathematical calculations, risk is the product of hazard and vulnerability".
 (UN DHA, 1992)

Definition of Risk used by Munich Re

7

Why do we use risk models?

- Representation of natural phenomena (severity, location, probability)
- Calculate the consequences of these phenomena
- Risk management (preparedness, mitigation)
- Estimate loss potentials

EQ Risk Modelling

- The methodology and parameters to be used vary with the purpose of risk modelling (i.e. mortality, disaster management, risk reduction, financial risk)
- In many cases, the losses to be modelled are not proper defined (i.e. Structural Loss (Percent of Damage or Rebuilding Costs?), Market Loss, Insured Loss, Economic Loss (including Live-Lines and LoP?)

Player in EQ Risk Modelling

EQ Risk Modelling is done by:

- Consultants
 (Re)Insurances
 Brokers
- Geol. surveys and public agencies
- Scientific groups/universities

'Science' and public

NatCat Risk Modelling for Insurance Business

Insurance business uses NatCat risk models since the 80th

Some examples:

- AIR since 1987
- Munich Re since 1987
- RMS since 1988
- EQECAT since 1994
- Benfield since 1999

Earthquake (25)

Australia **Belgium** Chile Germany Dominic.Rep. Greece India Israel Italy Jamaica Japan Jordan Canada

Colombia Mexico New Zealand **Philippines** Portugal **Puerto Rico** Slovenia Taiwan Turkey China Venezuela Cyprus

Storm (12) Belgium Denmark Germany France **Great Britain** Hong Kong Japan Luxemburg **Netherlands** Austria **Puerto Rico** Switzerland

Flood (4) Germany Great Britain Poland Czech Republic

Storm Surge (3) Great Britain (Caribbean) (USA)

Requirements

Development of Insurance Markets

Property insurance premium (non-life including health) per capita per year in US\$ Source: MR Economic Research/NatCatSERVICE®

In many cases research models require:

- >(GPS) coordinates
- Geotechnical information
- >Building characteristics
 - Age
 - Height
 - Occupancy
 - Construction type

CRESTA – An Insurance Standard

CRESTA was set up by the insurance industry in 1977 as an independent organisation for the technical management of natural hazard coverage.

CRESTA's main tasks are:

- Determining country-specific zones for the uniform and detailed reporting of accumulation risk data relating to natural hazards and creating corresponding zonal maps for each country
- Drawing up standardised accumulation risk-recording forms for each country
- Working out a uniform format for the processing and electronic transfer of accumulation risk data between insurance and reinsurance companies

12.09.2006

The CRESTA Format

Germany – 8270 Zones

Greece – 16 Zones

💓 Earthquake - Risk 1.0												
Manual input of accumulation data (Modify-based): Japan												
F	Oil+Petro Buildings	Oil+Petro Contents	Com.+Ind. Buildings	Com.+Ind. Contents	Loss of Profit	First Loss Oil+Petro(B)	First Los: Oil+Petro(0	s First Loss C) Com.+Ind.(I	Fir 3) Con	st Loss n.+Ind.(C)	Sum / Area:	
1 Hokkaido	20	15	40	40					40		155	
2.1 Aomori	100	75	250	200					30		655	
2.2 Akita	150	100	300	200					70		820	
2.3 Yamagata	350	250	50	40							690	
2.4 Niigata	130	100	400	300					60		990	
3.1 Iwate	700	300	150	300					80		1530	
3.2 Miyagi	150	100	600	500					80	45	1475	
3.3 Fukushima	450	240	600	400							1690	
4.1 Gumma	400	250	180	160							990	
4.2 Tochigi	400	100	250	240							990	
4.3 Saitama	200	40	14	12							266	
4.4 Ibaraki	300								453		753	
5.1 Chiba	4300	2300	4400	4200	500	100		4	350		20650	
5.2 Tokyo M.	2500	1000	3000	1500	300	50			350		9200	
5.3 Kanagawa		800	1500	1300							3600	
5.31 Kawasaki	2600		1500	1200	150	1500		8	700		15650	
5.32 Yokohama	1200		300	500	100	150		1	500		3850	
5.33 Rest Kan.	900	300		350	50	200			380		2680	
6.1 Gifu	20	30		40	20				100	80	290	
6.2 Nagano	350	200		800	60				250	200	1860	
6.3 Yamanashi	140	100		1500	30				200	150	2120	
6.4 Shizuoka	550	100		1200				1	300	1000	4150	
6.5 Aichi	700	400		1110	70				500	400	3280	
6.6 Mie	300	100		1500	40				500	100	2540	
Total sum:	16910	6900	13534	25592	5070	2000		0 20(343	1975	92624	
ОК		Previous Page		Next Page		alculate Sum		Currency Unit		hA	iust %	Cancel All
<u>v</u> n		age								-10	,	

Manual input of accumulation data. Press 定 sc> to Quit.

14:20:47

×

Scientific Risk Modelling

- Risk modelling requires input from a broad range of disciplines like earth sciences, civil engineering as well as from social, human and economic sciences, which makes it difficult to find a common sense.
- Research projects are often designed for a small area (i.e. one city), with a high resolution and/or focused on a detailed problem:
 - High computational requirements (run-time, memory)
 - Results are often difficult to adapt for insurance purposes
- There is a general tendency in modelling to increase the resolution and the number of parameters:
 - Does this really increase the quality of the models?

Uncertainties in Risk Modelling

- Event (location, size)
- Intensity (attenuation, directivity)
- Local influence (amplification, frequency)
- Risk information (building quality, location)
- Vulnerability (average damage, distribution)
- Loss (estimation of values, demand surge)

Damage Estimation

Damage Estimation

Vulnerability: Single Location

Vulnerability: Material and Workmanship

Modelling standards and earthquake scenario calculations are needed to verify and compare models:

- Historic events
- Actual events
- Stochastic events
- Common sense
- Loss analysis after earthquakes

24

Final Statements

- All modelling groups benefit from a close cooperation
- Insurance modeller need new ideas from scientific groups to improve EQ risk modelling
- Scientific groups can benefit from the experiences of 'insurance modeller'
- A better knowledge of the requirements, possibilities, and purposes of the other group would be helpful
- We need to reduce uncertainties in risk modelling
- We need to find modelling standards and better ways to verify and compare the modelling results

Thank you for your attention!

Dr. Dirk Hollnack

MunichRe GeoRisksResearch Earthquakes & Volcanos

Tel.: +49(0)89/3891- 4511

E-mail: dhollnack@munichre.com