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Ground motion prediction using “empirical” models

Changes in ground motion models caused by
weak ground motions from recent large surface
faulting earthquakes

Physical causes of weak ground motions from
large surface faulting earthquakes

Ground motion prediction using strong motion
simulation

Scenario simulations of basin and directivity
effects

Probabillistic ground motions based on simulations
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Sediment-Depth Factor
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Depth Dependent Characteristics of
Kinematic Rupture Models

* |n shallow faulting, fault slip displacement
may be large but slip velocity may be small

 |n buried faulting, fault slip displacement may
be small but slip velocity may be large
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Fracture Energy and Stress
Intensity Factor

Large for surface faulting events
Small for subsurface events

Large fracture energy events may produce
mainly long period seismic radiation

This Is consistent with surface faulting events
producing weak high frequency ground
motions



Dynamic Rupture Modeling of
Shallow Faulting

e Shallow zone modeled using low stress
drop and large slip weakening distance
Dc

* Velocity hardening in the weak shallow
zone (upper 5 km) reduces the ground
motion level of surface faulting
earthquakes



Dynamic Modeling of Buried and Surface Faulting
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Larger Slip Velocity for Buried than for Surface Faulting
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Features
Part o

of Rupture in the Shallow
f Fault (O —5 km depth)

Controlled by velocity strengthening
Larger slip weakening distance Dc
Larger fracture energy i.e.much energy

absorbec

from the crack tip

Lower rupture velocity

e | ower sl

0 velocity

Causes lower ground motions for

surface faulting than for buried faulting

events



Ground motions are conventionally represented
by a probabilistic response spectrum

Nonlinear time domain response analysis
requires time histories

Simulation procedures can be used to generate
source and site specific time histories for
scenario earthguakes that dominate the
probabilistic response spectrum

Large scale simulations can be used to provide
a probabilistic description of the ground motions
In the form of large suites of time histories



Ground Motion Prediction Models

Earthquake
Source Path Rite

Lurface

—w_
\\ Basin

Conrad

Moho
Empirical: Magwitude Di stance Soil Category
Seismological: Shear Crustal Complax 3D

Dislocation Wavegui de Structure



Ground Motion Effects
Represented by Simulations

Related to fault and station geometry:
 Rupture directivity effects

 Hanging wall effects

Related also to underground structure:

* Basin effects and basin edge effects
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Simulation Approach to
Ground Motion Prediction

* Go beyond “empirical” ground motion
attenuation equations (NGA)

e Use physics-based strong motion
simulation procedures

e Large scale simulations

Scenario - Terashake
Probabilistic - Cybershake
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TriNet Rapid Instrumental Intensity Map for Whittier Narrows Earthquake
Thu Oct 1,1987 07:42:20 AM POT M59 N34.06 W118.08 Depth: 9.5km |1D:Whittier_Narrows

118°
PROCESSED: Wed Sep 25, 2002 05:09:05 PM POT,

FERCENED  |notieh| Weak | Lighl |Moderale| Stong [Very sliong|  Severs Violenl | Exlieme
g nonz | none | none | Vereight | Light | Moderate |ModeraterHsawy| Heawy  |Very Heawy
PEAK ADC(%g) | <17 |.17-1.4| 1.4-39 | 3.89.2 | .2-18 | 18-34 34-85 85124 | =124
PEAKVEL{oms) | <01 [01-1.1] 1134 [ 3481 | 81416 | 163 31-60 60-116 | =116




Focusing of Energy by Rupture Dlrect|V|ty and Basin Effects
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e Simulates ground motions

for potential fault ruptures
within 200 km of each site

SN _
e ~ 12,700 sources in Southern
\ California from USGS 2002

bsm

SRS
S earthquake source model

e Extends USGS 2002 to

“. | multiple hypocenters and
O e slip models for each source

118’ ~ 100,000 ground motion
simulations for each site

Robert Graves et al., SCEC
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Disagqgreqgation for Whittier at 0.28 ¢
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TeraShake:
Southern San Andreas Fault Earthquake




M7.7 Earthquake on Southernmost San Andreas Fault




New ground motion models predict weaker
ground motions for large earthquakes

Weak ground motions from large surface faulting
earthquakes can be explained physically as
resulting from ductile behaviour in the shallow
crust

Ground motion prediction using empirical models
IS subject to large random variability

Simulations may be able to reduce that variability
at long periods e.qg. in directivity and basin effects



Ground motions are conventionally represented
by a probabilistic response spectrum

Nonlinear time domain response analysis
requires time histories

Simulation procedures can be used to generate
source and site specific time histories for
scenario earthguakes that dominate the
probabilistic response spectrum

Large scale simulations can be used to provide
a probabilistic description of the ground motions
In the form of large suites of time histories
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