Ground Motion Simulation and Prediction

Paul Somerville

URS Corporation, Pasadena, California Risk Frontiers, Macquarie University, Sydney

Outline

- Ground motion prediction using "empirical" models
- Changes in ground motion models caused by weak ground motions from recent large surface faulting earthquakes
- Physical causes of weak ground motions from large surface faulting earthquakes
- Ground motion prediction using strong motion simulation
- Scenario simulations of basin and directivity effects
- Probabilistic ground motions based on simulations

Ground Motion Prediction Models

Landers (1992, Mw=7.3)

Kobe, Japan (1995, Mw=6.9)

Northridge (1994, Mw=6.7)

Sierra Madre (1991, Mw=5.6)

Depth Dependent Characteristics of Kinematic Rupture Models

- In shallow faulting, fault slip displacement may be large but slip velocity may be small
- In buried faulting, fault slip displacement may be small but slip velocity may be large

G Scaling for Event Populations

G Scaling for Event Populations

Fracture Energy and Stress Intensity Factor

- Large for surface faulting events
- Small for subsurface events
- Large fracture energy events may produce mainly long period seismic radiation
- This is consistent with surface faulting events producing weak high frequency ground motions

Dynamic Rupture Modeling of Shallow Faulting

- Shallow zone modeled using low stress drop and large slip weakening distance Dc
- Velocity hardening in the weak shallow zone (upper 5 km) reduces the ground motion level of surface faulting earthquakes

Dynamic Modeling of Buried and Surface Faulting

Larger Slip Velocity for Buried than for Surface Faulting

Features of Rupture in the Shallow Part of Fault (0 – 5 km depth)

- Controlled by velocity strengthening
- Larger slip weakening distance Dc
- Larger fracture energy i.e.much energy absorbed from the crack tip
- Lower rupture velocity
- Lower slip velocity
- Causes lower ground motions for surface faulting than for buried faulting events

Ground Motion Time Histories from Simulation

- Ground motions are conventionally represented by a probabilistic response spectrum
- Nonlinear time domain response analysis requires time histories
- Simulation procedures can be used to generate source and site specific time histories for scenario earthquakes that dominate the probabilistic response spectrum
- Large scale simulations can be used to provide a probabilistic description of the ground motions in the form of large suites of time histories

Ground Motion Prediction Models

Ground Motion Effects Represented by Simulations

Related to fault and station geometry:

- Rupture directivity effects
- Hanging wall effects

Related also to underground structure:

• Basin effects and basin edge effects

Simulation Approach to Ground Motion Prediction

- Go beyond "empirical" ground motion attenuation equations (NGA)
- Use physics-based strong motion simulation procedures
- Large scale simulations
 Scenario Terashake
 Probabilistic Cybershake

TriNet Rapid Instrumental Intensity Map for Whittier Narrows Earthquake Thu Oct 1, 1987 07:42:20 AM PDT M 5.9 N34.06 W118.08 Depth: 9.5km ID:Whittier_Narrows

PROCESSED: Wed Sep 25, 2002 05:09:06 PM PDT,

PERCEIVED SHAKING	Notieli	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Modera1e/Heavy	Heavy	Very Heavy
PEAK ACC (%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(om/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	- 1	11-111	IV	٧	VI	VII	VIII	IX	X+

Focusing of Energy by Rupture Directivity and Basin Effects

CyberShake Platform

- Simulates ground motions
 for potential fault ruptures
 within 200 km of each site
 - ~ 12,700 sources in Southern
 California from USGS 2002
 earthquake source model
- Extends USGS 2002 to multiple hypocenters and slip models for each source
 - ~ 100,000 ground motion simulations for each site

Robert Graves et al., SCEC

CyberShake Platform

CyberShake Platform

CyberShake Platform Disaggregation for Whittier at 0.28 g

WNGC Disaggregation @ IML = 0.284 g (3 sec SA) A&S 1997 P = 0.0010340 %Contribution 0 20 30 estimation of the state of the 30 40 50 40 70 50 Rupture Distance (km) 90 20 100 110 CyberShake P = 0.00469Large earthquakes on 10 southernmost SAF %Contribution 0 20 30 Bupture 001 30 40 50 60 70 Rupture Distance (km) 30 20

100 110

Robert Graves et al., SCEC

TeraShake: Southern San Andreas Fault Earthquake

TeraShake Platform

M7.7 Earthquake on Southernmost San Andreas Fault

Summary – Part 1

- New ground motion models predict weaker ground motions for large earthquakes
- Weak ground motions from large surface faulting earthquakes can be explained physically as resulting from ductile behaviour in the shallow crust
- Ground motion prediction using empirical models is subject to large random variability
- Simulations may be able to reduce that variability at long periods e.g. in directivity and basin effects

Summary – Part 2

- Ground motions are conventionally represented by a probabilistic response spectrum
- Nonlinear time domain response analysis requires time histories
- Simulation procedures can be used to generate source and site specific time histories for scenario earthquakes that dominate the probabilistic response spectrum
- Large scale simulations can be used to provide a probabilistic description of the ground motions in the form of large suites of time histories