Do Scaled Ground Motion Records Cause Biased Nonlinear Structural Responses?

By Paolo Bazzurro (AIR) Nicolas Luco (USGS)

www.air-worldwide.com

Presented at:

Interdisciplinary Workshop Management of Earthquake Risks

Zurich, Switzerland, August 28-29, 2006

<u>Given:</u>

1) A nonlinear structural model to be dynamically analyzed (design or evaluation) at a specific site.

Possible Genesis of a Target Response Spectrum

2%/50yr Uniform Hazard Spectrum for San Francisco

Problem Statement (cont'ed)

<u>Given:</u>

- 1) A nonlinear structural model to be dynamically analyzed.
- 2) An earthquake magnitude (M), source-to-site distance (R), and $S_a(T_1)$ level

Find:

The "average" (geometric mean) nonlinear structural response for the target ground motion.

e.g., story drift ratios \equiv differential horizontal displ. of floors

- Next Generation Attenuation (NGA) Project has about 3,500 "uniformly" processed three-component recordings
- □ In many practical applications:
 - M large
 - R is short
 - > $S_a(T_1)$ is high
- □ "Right" records are <u>scarce</u>

Alternative No 1: Spectrum matching

□ Spectrum match earthquake records to "appropriate" target spectrum of given M, R, and $S_a(T_1)$, *e.g.*,

Perform nonlinear dynamic analyses and calculate the geometric mean response

Alternative No 2: Amplitude Scaling

□ Scale (in amplitude only) the earthquake records to $S_a(T_1)$, e.g., when $T_1 = 1.0 \text{ sec.}$,

Perform nonlinear dynamic analyses and calculate the geometric mean response

Use of Scaled Records for NL Dynamic Analyses

Is that a legitimate operation or does it introduce bias in <u>median</u> and dispersion of the structural response?

Bias = $\frac{\text{median structural response to scaled records}}{\text{median structural response to unscaled records naturally at target } S_a$

□ If there is a bias, does it depend

- Scale factor
- > characteristics of the <u>target ground</u> motion scenario (e.g., *M* and *R*),
- characteristics of the <u>source</u> records
- vibration period(s) of the structure of interest
- strength of the structure (i.e., level of response nonlinearity)
- contribution of higher (than the first) vibration modes to the structural response.

□ Are there records that are better candidate than others for scaling?

<u>Intra-bin Scaling</u>: "right" M and R but "wrong" (i.e., lower) $S_a(T_1)$ level

Bin Label	$M_{ m w}$	R _{close}		
Ι	6.4 to 6.8	0 to 15km		
II	6.4 to 6.8	15 to 30km		73 records
III	6.4 to 6.8	30 to 50km	>	each
IV	6.9 to 7.6	0 to 15km		
V	6.9 to 7.6	15 to 30km		
VI	6.9 to 7.6	30 to 50km		

+ Near Source Bin: as Bin I but forward directivity and orthogonal component.

<u>Inter-bin Scaling</u>: "wrong" M, and/or R, and/or $S_a(T_1)$ level

Scenario #	Source Bin	Target Bin
1	Ι	IV
2	II	IV
3	V	IV
4	II	V
5	III	V
6	VI	V
7	III	VI
8	III	Ι
9	Ι	Near-Source
10	Near-Source	Ι

□ 48 Single-Degree-of-Freedom (SDOF) NL Oscillators

- 8 Periods: T = 0.1, 0.2, 0.3, 0.5, 1, 2, 3, and 4s.
- Strength Reduction Factors: R=1, 2, 4, 6, 8, and 10
- Force-displacement hysteretic behavior is bilinear with 2% hardening (no strength or stiffness degradation)

- SDOF systems: peak inelastic displacement (inelastic spectral displacement), S_dⁱ
- □ MDOF Building (T_1 =2.3s, υ_1 =**2**% of critical):
 - > the peak roof drift ratio, θ_{roof} (i.e., peak roof displacement normalized by the building height),
 - > the maximum peak (over time) inter-story drift ratio over all stories, θ_{max}

□ NOTES:

- SDOF results are for constant R (yield strength varies from record to record). About 2M runs
- > MDOF results are for a fixed strength (about 6,500 runs)

Procedure for Quantifying Bias due to Scaling

- □ Select first target S_a for scaling and compute response
- Scale all other records in the "source" bin to the target S_a and keep track of scaling factor, SF, values

NOTE: results shown are for <u>intra bin</u> scaling: Near Source Record Bin, Moderate Strength (R=4) and Period (T=1s)

Response Plotted vs. Elastic S_d

Ratio of Responses Plotted vs. Scale Factor

fitted line that gives the bias in median S_d^{i} **Bias if** different for a given scale factor than 1 "Near-Source" Bin, T = 1s, R = 4 "Near-Source" Bin, T = 1s, R = 4 = 2%) 2% **Scaled record** •0¹ SF = 29.1 10^{1} П Target record Я Я 5%, R, ď 5% П П SF=0.35 Bias=2.1 S_d (Τ,ζ: らて 10 പ് Scaled / Unscaled Scaled / Unscaled Bias ≠ a SF^b s'≡:1:ΩΩ Bias proportional to SF b=0.38 11111 10⁻¹ 100 10-1 10¹ 101 Scale Factor Scale Factor

BIAS=a SF^b

Yes, There Is Bias? Why?

Difference in spectral shape. On average

- valley" records are scaled up
- » "peak" records are scaled down

□ This response bias applies to the median response of

- Randomly selected record scaled by a SF=x
- > A suite of records all scaled by the same SF=x
- A suite of records that, on average, are scaled by the same SF=x but with different scaling factors for each single record (à la Cornell)

Intra-Bin Scaling: Bias for T=1s, R=4 SDOF, All Bins

Intra-Bin Scaling: Bias for All SDOFs, Near-Source Bin

NOTE: a=1 for all SDOFs in equation BIAS=a SF^b

Inter-Bin Scaling: T=1s, R=4 SDOF, Bin III to Bin I

Bin III (M=6.4 to 6.8; R=30 to 50km) is weaker than Bin I (M=6.4 to 6.8; R=0 to 15km)

intra-bin case)

Inter-Bin Scaling: T=1s, R=4 SDOF, Bin III to Bin I

MDOF Structure: Intra Bin Scaling, Near-Source Bin

 θ_{roof} is first-mode dominated No bias in the elastic range. Small bias in the post-elastic range θ_{max} is sensitive to higher modes Bias is larger and is in the elastic case too due to differences in spectral shapes (at $T < T_1$ this time!)

How Can the Bias be reduced?

Conclusions

- □ Scaling a randomly selected record induces bias in nonlinear response (conditional on M, R, and S_a level)
- Bias depends on
 - Scale factor
 - > The fundamental period of the structure
 - > The overall strength of the structure
 - > The sensitivity of the response measure to higher modes
 - > The ground motion scenario (e.g., *M* and *R*) of the records that are scaled
- □ Inter-bin scaling bias is comparable to intra-bin scaling bias for the target M and R bin case. However, there is usually an additional bias due to pre-scaling to median S_a of target bin
- Judicious selection of source records reduces considerably the response bias
- The results of this study can serve as a basis to place limits on the amount of scaling that is acceptable for a given structure (alternatively, correct response for bias)

