Do Scaled Ground Motion Records Cause Biased Nonlinear Structural Responses?

By
Paolo Bazzurro (AIR)
Nicolas Luco (USGS)

Presented at:
Interdisciplinary Workshop
Management of Earthquake Risks
Zurich, Switzerland,
August 28-29, 2006

www.air-worldwide.com
Problem Statement

Given:

1) A nonlinear structural model to be dynamically analyzed (design or evaluation) at a specific site.

2) A ground motion target response spectrum.

3) An earthquake magnitude (M), source-to-site distance (R), and other ground motion prediction equation (a.k.a., attenuation) input parameters of interest. e.g.,
 - M = 7.5
 - R = 3 km
 - Forward rupture directivity region
 - Strike-normal orientation
 - SD NEHRP site condition
Possible Genesis of a Target Response Spectrum

2%/50yr Uniform Hazard Spectrum for San Francisco

Disaggregation

Prob. Seismic Hazard Disaggregation
Downtown_San_Fra 122.399° W, 37.798 N.
Mean period 1.00 sec, Accel.=0.8397 g
Median Return Time of GM 2275 yrs
Mean (R,Ms) 14.1 km, 7.67, 1.57
Model (R,Ms): =13.9 km, 7.94, 1.60 (from peak R,Ms bin)
Model (R,Ms): =13.9 km, 7.94, 1.57 (from peak R,Ms bin)
Binning: DeltaR=1.0 km, delMa=0.2, DeltaMs=1.0

M~7.8
R~15km

Problem Statement (cont’ed)

Given:

1) A nonlinear structural model to be dynamically analyzed.

2) An earthquake magnitude (M), source-to-site distance (R), and $S_a(T_1)$ level

Find:

- The “average” (geometric mean) nonlinear structural response for the target ground motion.

 e.g., story drift ratios \equiv differential horizontal displ. of floors
Next Generation Attenuation (NGA) Project has about 3,500 “uniformly” processed three-component recordings.

In many practical applications:
- M large
- R is short
- $S_a(T_1)$ is high

“Right” records are scarce.
Alternative No 1: Spectrum matching

- Spectrum match earthquake records to “appropriate” target spectrum of given M, R, and $S_a(T_1)$, e.g.,

- Perform nonlinear dynamic analyses and calculate the geometric mean response
Alternative No 2: Amplitude Scaling

- Scale (in amplitude only) the earthquake records to $S_a(T_1)$, e.g., when $T_1 = 1.0$ sec.

- Perform nonlinear dynamic analyses and calculate the geometric mean response
Use of Scaled Records for NL Dynamic Analyses

- Is that a legitimate operation or does it introduce bias in median and dispersion of the structural response?

 \[
 \text{Bias} = \frac{\text{median structural response to scaled records}}{\text{median structural response to unscaled records naturally at target } S_a}
 \]

- If there is a bias, does it depend
 - Scale factor
 - characteristics of the target ground motion scenario (e.g., M and R),
 - characteristics of the source records
 - vibration period(s) of the structure of interest
 - strength of the structure (i.e., level of response nonlinearity)
 - contribution of higher (than the first) vibration modes to the structural response.

- Are there records that are better candidate than others for scaling?
Analyses Setup: Bins of Ground Motion Records

- **Intra-bin Scaling**: “right” M and R but “wrong” (i.e., lower) $S_a(T_1)$ level

<table>
<thead>
<tr>
<th>Bin Label</th>
<th>M_w</th>
<th>R_{close}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6.4 to 6.8</td>
<td>0 to 15km</td>
</tr>
<tr>
<td>II</td>
<td>6.4 to 6.8</td>
<td>15 to 30km</td>
</tr>
<tr>
<td>III</td>
<td>6.4 to 6.8</td>
<td>30 to 50km</td>
</tr>
<tr>
<td>IV</td>
<td>6.9 to 7.6</td>
<td>0 to 15km</td>
</tr>
<tr>
<td>V</td>
<td>6.9 to 7.6</td>
<td>15 to 30km</td>
</tr>
<tr>
<td>VI</td>
<td>6.9 to 7.6</td>
<td>30 to 50km</td>
</tr>
</tbody>
</table>

 73 records each

- **Inter-bin Scaling**: “wrong” M, and/or R, and/or $S_a(T_1)$ level

<table>
<thead>
<tr>
<th>Scenario #</th>
<th>Source Bin</th>
<th>Target Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>IV</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>IV</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>IV</td>
</tr>
<tr>
<td>4</td>
<td>II</td>
<td>V</td>
</tr>
<tr>
<td>5</td>
<td>III</td>
<td>V</td>
</tr>
<tr>
<td>6</td>
<td>VI</td>
<td>V</td>
</tr>
<tr>
<td>7</td>
<td>III</td>
<td>VI</td>
</tr>
<tr>
<td>8</td>
<td>III</td>
<td>I</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>Near-Source</td>
</tr>
<tr>
<td>10</td>
<td>Near-Source</td>
<td>I</td>
</tr>
</tbody>
</table>

31 records
48 Single-Degree-of-Freedom (SDOF) NL Oscillators
- 8 Periods: \(T = 0.1, 0.2, 0.3, 0.5, 1, 2, 3, \) and 4 s.
- 6 Strength Reduction Factors: \(R = 1, 2, 4, 6, 8, \) and 10
- Force-displacement hysteretic behavior is bilinear with 2% hardening (no strength or stiffness degradation)

9-story, 5-bay Steel Moment Resisting Frame
- Elastic model
- Ductile model

\[
F = S_a \cdot m
\]
\[
R = \frac{S_a}{S_a} \cdot m
\]
Measures of Structural Response

- SDOF systems: peak inelastic displacement (inelastic spectral displacement), S_d^i

- MDOF Building ($T_1=2.3\text{s}$, $\nu_1=2\%$ of critical):
 - the peak roof drift ratio, θ_{roof} (i.e., peak roof displacement normalized by the building height),
 - the maximum peak (over time) inter-story drift ratio over all stories, θ_{max}

- NOTES:
 - SDOF results are for constant R (yield strength varies from record to record). About 2M runs
 - MDOF results are for a fixed strength (about 6,500 runs)
Procedure for Quantifying Bias due to Scaling

- Select first target S_a for scaling and compute response
- Scale all other records in the “source” bin to the target S_a and keep track of scaling factor, SF, values

NOTE: results shown are for intra bin scaling: Near Source Record Bin, Moderate Strength (R=4) and Period (T=1s)
Response Plotted vs. Elastic S_d

Intra-Bin Scaling Example

- Unscaled Accelerogram
- Target

Scale Factor = 29.1

Response lower than average. Biased?
Ratio of Responses Plotted vs. Scale Factor

BIAS = \(a \cdot SF^b \)

fitted line that gives the bias in median \(S_d^i \) for a given scale factor

Bias if different than 1

Target record

Scaled record

Scaled/Unscaled \(S_d \) (\(T, \xi = 5\% \), \(R, \alpha = 2\% \))

No bias for \(SF = 1 \)

Bias proportional to \(SF \)

Bias = 2.1

Bias = 0.70

Bias = 0.35

Bias = a \(SF^b \)

\(a = 1.00 \)

\(b = 0.88 \)
Yes, There Is Bias? Why?

- Difference in spectral shape. On average
 - “valley” records are scaled up
 - “peak” records are scaled down

31 "Near-Source" Recordings

- Scaled up by 6.8
- Scaled down by 0.35

More aggressive at $T>T_1$

More benign at $T>T_1$
Three Meanings for This Response Bias

- This response bias applies to the median response of
 - Randomly selected record scaled by a $SF=x$
 - A suite of records all scaled by the same $SF=x$
 - A suite of records that, on average, are scaled by the same $SF=x$ but with different scaling factors for each single record (à la Cornell)
Intra-Bin Scaling: Bias for $T=1\text{s}$, $R=4$ SDOF, All Bins

- Largest for Near-Source Bin
- Smallest for Bin III
Intra-Bin Scaling: Bias for All SDOFs, Near-Source Bin

Bias increases with inelasticity

Bias decreases at longer periods

Peak due to predominant period of pulse-like records in this bin

NOTE: $a=1$ for all SDOFs in equation $BIAS=a \cdot SF^b$
Inter-Bin Scaling: $T=1s$, $R=4$ SDOF, Bin III to Bin I

- Bin III ($M=6.4$ to 6.8; $R=30$ to 50km) is weaker than Bin I ($M=6.4$ to 6.8; $R=0$ to 15km)

$$SF_{\text{inter-bin}} = r(m[S_a]) * SF_{\text{remaining}}$$

- Ratio of median S_a's target/source
- Remaining scaling factor (as in the intra-bin case)
Inter-Bin Scaling: $T=1\text{s}, R=4$ SDOF, Bin III to Bin I

Residual bias at SF=1
Bias similar to intra-bin case for same target bin (0.38 before)

Target Records more aggressive at $T>T_1$

Source records more benign at $T>T_1$
MDOF Structure: Intra Bin Scaling, Near-Source Bin

\(\theta_{\text{roof}} \) is first-mode dominated
No bias in the elastic range.
Small bias in the post-elastic range

\(\theta_{\text{max}} \) is sensitive to higher modes
Bias is larger and is in the elastic case too due to differences in spectral shapes (at \(T<T_1 \) this time!)
How Can the Bias be reduced?

Most similar 10 only!

Bias virtually gone
Conclusions

- Scaling a randomly selected record induces bias in nonlinear response (conditional on M, R, and S_a level)

- Bias depends on
 - Scale factor
 - The fundamental period of the structure
 - The overall strength of the structure
 - The sensitivity of the response measure to higher modes
 - The ground motion scenario (e.g., M and R) of the records that are scaled

- Inter-bin scaling bias is comparable to intra-bin scaling bias for the target M and R bin case. However, there is usually an additional bias due to pre-scaling to median S_a of target bin

- **Judicious** selection of source records reduces considerably the response bias

- The results of this study can serve as a basis to place limits on the amount of scaling that is acceptable for a given structure (alternatively, correct response for bias)