Do Scaled Ground Motion Records Cause Biased Nonlinear Structural Responses?

By

Paolo Bazzurro (AIR)
Nicolas Luco (USGS)

Presented at:

Interdisciplinary Workshop
Management of Earthquake Risks
Zurich, Switzerland,
August 28-29, 2006

Problem Statement

Given:

1) A nonlinear structural model to be dynamically analyzed (design or evaluation) at a specific site.
2) A grc
3) An e_{i} and c atten
e.g., .Typ. Splice 盾

Possible Genesis of a Target Response Spectrum

2\%/50yr Uniform Hazard Spectrum for San Francisco

Problem Statement (cont'ed)

Given:

1) A nonlinear structural model to be dynamically analyzed.
2) An earthquake magnitude (M), source-to-site distance (R), and $S_{a}\left(T_{1}\right)$ level

Find:

> The "average" (geometric mean) nonlinear structural response for the target ground motion.
e.g., story drift ratios \equiv differential horizontal displ. of floors

Availability of Ground Motion Records of given M, R, $\mathbf{S}_{8}^{\prime}\left(\mathrm{F}_{1}\right)$

- Next Generation Attenuation (NGA) Project has about 3,500 "uniformly" processed three-component recordings
- In many practical applications:
> M large
$>R$ is short
> $S_{a}\left(T_{1}\right)$ is high
- "Right" records are scarce

圂

Alternative No 1: Spectrum matching

- Spectrum match earthquake records to "appropriate" target spectrum of given M, R, and $S_{a}\left(T_{1}\right)$, e.g.,

- Perform nonlinear dynamic analyses and calculate the geometric mean response

A曷

Alternative No 2: Amplitude Scaling

- Scale (in amplitude only) the earthquake records to $S_{a}\left(T_{1}\right)$, e.g., when $T_{1}=1.0 \mathrm{sec}$.,

- Perform nonlinear dynamic analyses and calculate the geometric mean response

Use of Scaled Records for NL Dynamic Analyses

- Is that a legitimate operation or does it introduce bias in median and dispersion of the structural response?

$$
\frac{\text { median structural response to scaled records }}{\text { median structural response to unscaled records naturally at target } S_{a}}
$$

- If there is a bias, does it depend
> Scale factor
> characteristics of the target ground motion scenario (e.g., M and R),
> characteristics of the source records
> vibration period(s) of the structure of interest
> strength of the structure (i.e., level of response nonlinearity)
> contribution of higher (than the first) vibration modes to the structural response.
- Are there records that are better candidate than others for scaling?

Analyses Setup: Bins of Ground Motion Records

- Intra-bin Scaling: "right" M and R but "wrong" (i.e., lower) $S_{a}\left(T_{1}\right)$ level

Bin Label	M_{w}	$R_{\text {close }}$
I	6.4 to 6.8	0 to 15 km
II	6.4 to 6.8	15 to 30 km
III	6.4 to 6.8	30 to 50 km
IV	6.9 to 7.6	0 to 15 km
V	6.9 to 7.6	15 to 30 km
VI	6.9 to 7.6	30 to 50 km

73 records each

+ Near Source Bin: as Bin I but forward directivity and orthogonal component.
- Inter-bin Scaling: "wrong" M, and/or R, and/or $S_{a}\left(T_{1}\right)$ level

Scenario \#	Source Bin	Target Bin
1	I	IV
2	II	IV
3	V	IV
4	II	V
5	III	V
6	VI	V
7	III	VI
8	III	I
9	I	Near-Source
10	Near-Source	I

Analyses Setup: Structures Considered

- 48 Single-Degree-of-Freedom (SDOF) NL Oscillators
, 8 Periods: $T=0.1,0.2,0.3,0.5,1,2,3$, and 4 s .
> 6 Strength Reduction Factors: $\mathrm{R}=1,2,4,6,8$, and 10
> Force-displacement hysteretic behavior is bilinear with 2% hardening (no strength or stiffness degradation)

Force

- 9-stor ${ }_{y}^{\Delta_{\text {max }}, ~ i}$-bay Steel Moment Resisting FraRMe1
, Elasito
- Ductile model 1 Displaced

Single-Degree-of-Freedom Structure

> Typ. Splice

Measures of Structural Response

- SDOF systems: peak inelastic displacement (inelastic spectral displacement), $S_{d}{ }^{i}$
- MDOF Building ($\mathrm{T}_{1}=2.3 \mathrm{~s}, \mathrm{v}_{1}=\mathbf{2 \%}$ of critical):
> the peak roof drift ratio, $\theta_{\text {roof }}$ (i.e., peak roof displacement normalized by the building height),
> the maximum peak (over time) inter-story drift ratio over all stories, $\theta_{\max }$
- NOTES:
> SDOF results are for constant R (yield strength varies from record to record). About 2M runs
> MDOF results are for a fixed strength (about 6,500 runs)

Procedure for Quantifying Bias due to Scaling

- Select first target S_{a} for scaling and compute response
- Scale all other records in the "source" bin to the target S_{a} and keep track of scaling factor, SF, values

NOTE: results shown are for intra bin scaling: Near Source Record Bin, Moderate Strength ($\mathrm{R}=4$) and Period ($\mathrm{T}=1 \mathrm{~s}$)
$M_{4}^{20 a}$

Response Plotted vs. Elastic \boldsymbol{S}_{d}

Ratio of Responses Plotted vs. Scale Factor

BIAS=a SF ${ }^{b}$

Bias if different
than 1

fitted line that gives the bias in median $S_{d}{ }^{i}$ for a given scale factor

Yes, There Is Bias? Why?

. Difference in spectral shape. On average
> "valley" records are scaled up
> "peak" records are scaled down

31 "Near-Source" Recordings

31 "Near-Source" Recordings

Three Meanings for This Response Bias

- This response bias applies to the median response of
, Randomly selected record scaled by a $S F=x$
- A suite of records all scaled by the same $S F=x$
> A suite of records that, on average, are scaled by the same $S F=x$ but with different scaling factors for each single record (à la Cornell)

Intra-Bin Scaling: Bias for $T=1 \mathrm{~s}, \mathrm{R}=4$ SDOF, All Bins

$T=1 \mathrm{~s}, R=4$

Intra-Bin Scaling: Bias for All SDOFs, Near-Source Bin

Peak due to predominant period of pulselike records in this bin

Bias increases with inelasticity

NOTE: $a=1$ for all SDOFs in equation BIAS=a SF b

Inter-Bin Scaling: T=1s, R=4 SDOF, Bin III to Bin I

- Bin III ($\mathrm{M}=6.4$ to $6.8 ; \mathrm{R}=30$ to 50 km) is weaker than $\operatorname{Bin} \mathrm{I}(\mathrm{M}=6.4$ to 6.8 ; $\mathrm{R}=0$ to 15 km)

$$
S F_{\mathrm{inter}-\mathrm{bin}}=r\left(m\left[S_{a}\right]\right) * S F_{\text {(remaining) }}
$$

Ratio of median	Remaining scaling factor (as in the intra-bin case)

Inter-Bin Scaling: T=1s, R=4 SDOF, Bin III to Bin I

MDOF Structure: Intra Bin Scaling, Near-Source Bin

$\theta_{\text {roof }}$ is first-mode dominated No bias in the elastic range. Small bias in the post-elastic range

Ductile 9-Story, "Near-Source" Scenario
$\theta_{\text {max }}$ is sensitive to higher modes Bias is larger and is in the elastic case too due to differences in spectral shapes (at $T<T_{1}$ this time!)

How Can the Bias be reduced?

실

Conclusions

- Scaling a randomly selected record induces bias in nonlinear response (conditional on M, R, and S_{a} level)
- Bias depends on
, Scale factor
r The fundamental period of the structure
> The overall strength of the structure
> The sensitivity of the response measure to higher modes
> The ground motion scenario (e.g., M and R) of the records that are scaled
- Inter-bin scaling bias is comparable to intra-bin scaling bias for the target M and R bin case. However, there is usually an additional bias due to pre-scaling to median S_{a} of target bin
- Judicious selection of source records reduces considerably the response bias
- The results of this study can serve as a basis to place limits on the amount of scaling that is acceptable for a given structure (alternatively, correct response for bias)

