

Condition indicators for soil behavior under earthquake loading

Juliane Buchheister

Jan Laue

Overview

- 1. Introduction
- 2. Identification of relevant soil indicators
- 3. Procedure for liquefaction susceptibility, example application
- 4. Experiments
- 5. Conclusions
- 6. Outlook

Introduction

Fig 1: Schematic picture of the earthquake phenomenon with focus on the soil behavior

Identification of relevant soil indicators

- First step: Study of codes different site classification procedures
- e.g. Comparison EC (a), NEHRP (b) and TC (c) in an area of Adapazari

Fig 2: Comparison of the soil classification based on a cutout of the south area of Adapazari: (a) Eurocode Soil Classes (b) NEHRP Site Classes (c) Turkish Code Local Site Classes

Identification of relevant soil indicators

Identification of relevant soil indicators: ground amplification

Determination by site response analysis

- -> Use of shake type program (1D)
 - -> Indicators:
 - Soil layer thickness,
 - unit weight,
 - maximum shear modulus or shear wave velocity,
 - modulus reduction curve and damping ratio curve.
- ⇒ (de-) amplification of the earthquake loading due to the subsoil

Procedure for liquefaction susceptibility

Comparison of a deterministic and probabilistic approach

layer	USCS soil type	e l	MCC		criterion of KTA			F.S. of simplified procedure				
1	Fill		-		-					-		
2	ML/CL		Х						1.09 liquefaction			
3	ML		Х		-				1.13 liquefaction			
4	CH/MH	not si	usceptibl	e	X							
5	CL/CH		Х						0.71 liquefaction			
6	ML	not si	usceptibl	e	liquefaction possible				1.28 no liquefaction			
7	CL		Х		-				7			
8	MH/CH	not si	usceptibl	e no l	no liquefaction to be expected				/ 0.67 liquefaction			
9	ML	not si	usceptibl	e liquefaction possible				0.85 liquefaction				
10	SP-SM		-		liquefaction possible							
11	SP-SM		-		liquefaction possible				1.17 liquefaction			
							. /					
7.0	10 n.a.	11.19	2.417	n.a.	99.93	0.084	n.a.	99.95	0.113	n.liq.	9.009	
	20 n.a.	0.210	0.078	n.a.	98.60	0.056	n.a.	99.88	0.093	n.liq.	0.077	
	40 n.a.	0	0.017	n.a.	0.104	0.039	n.a.	0.123	0.035	n.liq.	0.043	
	80 n.a.	0	0.011	n.a.	0.035	0.023	/n.a.	0.031	0.028	n.liq.	0.028	
7.5	10 n.a.	99.94	99.98	n.a.	99.95	99.93	n.a.	99.94	99.93	n.liq.	99.21 🔻	
	20 <mark>n.a.</mark>	<mark>7.930</mark>	<mark>3.905</mark>	n.a.	<mark>99.93</mark>	0.095	n.a.	<mark>99.94</mark>	0.108	<mark>n.liq.</mark>	0.095	
	40 n.a.	0	0.025	n.a.	5.35	0.046	n.a.	60.31	0.046	n.liq.	0.047	
	80 n.a.	0	0.006	n.a.	0.083	0.019	n.a.	0.039	0.035	n.liq.	0.031	

Tab 2: Summary of results of the deterministic approach (Buchheister et al., 2006)

Tab 3: Summary of results of the probablistic approach (Buchheister et al., 2006)

Eidgenössische Technische Hochschule

Open questions

not included in the selected procedure for liquefaction susceptibility:

- influence of the loading function
- influence of the stress state
- influence of the fines content, especially silt (complex subdivision between plastic and non plastic fines)

Idea for further research

Liquefaction influencing parameters

f (*relative density, grain size distribution, soil type, grain texture and structure, consolidation stresses, stress-strain history, intensity and duration of the earthquake*)

=> detailed investigation into the stress state and loading
function of silty sand with laboratory experiments

Hollow Cylinder Apparatus (HCA)

hydraulic load frame

soil specimen 100 x 50 x 200 mm computer control system

Fig 8: Hollow Cylinder Apparatus of the Institute for Geotechnical Engineering

14/19

pressure control unit

HCA Experiments on fine sand

- Fine sand, sub-rounded to rounded grains, medium dense, fully saturated, anisotropic stress state
- Cyclic loading:
 - sine wave, deformation controlled
 - torsional f=1 Hz und A=1°
 - axial f=0.7 Hz and A=1mm
- Three experiments:
 - cyclic axial test
 - cyclic torsional test
 - cyclic axial and torsional test

Fig 9: 40x magnification of grain size

Institute for **FET** Geotechnical Engineering

HCA Results of first test series: Pore water pressure development

Fig 10: Pore water pressure development of all three tests (Buchheister and Laue, 2006)

Conclusions

- Relevant condition indicators for the soil part have been identified, focus is on liquefaction and ground amplification,
- Procedure for the liquefaction susceptibility is set up and implemented in the Bayesian network,
- Hollow cylinder test results show a promising way to investigate the mechanical behavior of silty and sandy soil due to earthquake loading.

Outlook

Secondary effects (non linear behavior) are not included in the state of the art

- Increase of pore water pressure reduces stiffness of the soil
- Deformation changes the soil density i.e. loose soil can densify -> v_s increases, whereas dense soil can dilate -> v_s decreases,
- Topographic influences,
- Anisotropic conditions.

Outlook

- investigation of ground motion characteristics,
- HCA experiments research stress state, silty soil,
- comparison to field data,
- find new condition indicator, based on mechanical properties, permeability and pulse period.

Fig 11: Number of cycles vs. the new factor "k2" (Laue and Buchheister, 2004)

