Building Information Extraction from Satellite Imagery for Regional Risk Assessment

Pooya Sarabandi Anne S. Kiremidjian Civil and Environmental Engineering, Stanford University, CA, 94305-4020

Outline

- Background and Motivations
- Objective of the Research
- Loss Estimation Tools, Loss Estimation Methodology and its Shortcomings (example: HAZUS[®])
- Building Inventory Updates and Loss Estimation
- MIHEA: Building Inventory Extraction Tool
- Examples of 3D Models Created by MIHEA
- Loss Estimation Using Updated Inventory Data
- Conclusions
- Future Plans

Background

- Pre-disaster vulnerability assessment and postdisaster response have become essential components in disaster management.
- Loss estimation has became a useful tool for decisionmaking agencies to measure and localize high priority locations for post-disaster response.
- Existing loss estimation tools most often lack accurate building inventory.

Motivations

- Demand for more accurate risk estimates at an intra-regional scale (emergency response, planning, insurance and etc.)
- Advancements in Remote Sensing technology.
- Availability of High Resolution Imagery.
- RS data are becoming more affordable compared to land surveys.
- Frequent building inventory updates are not available.
- Electronic building inventory information is not available at many locations in the world.

Objective

- This study presents a methodology for extracting critical structural attributes (such as height and footprint area) -used in earthquake loss models- from remotely sensed data.
- This study also presents a 3D urban modeling tool called MIHEA which is developed for the purpose of updating current building inventories.

Current Loss Estimation Tools

HAZUS[®]
HAZard-US by FEMA

INternet-based Loss Estimation Tool

TARTHQUAKE ENGINEERING CENTER

Loss Estimation Methodology (Example: HAZUS)

Loss Estimation Methodology - cont'd (example: HAZUS)

Interdisciplinary workshop on Management of Earthquake Risks ETH Zurich, Switzerland - August, 28-29, 2006

THE JOHN A. T EARTHQUAKE ENGINEERING CENTER

Loss Estimation Methodology and Its Shortcomings (example: HAZUS) – cont'd

- Mapping schemes only for few countries besides the US.
- Highly generalized regional statistical profile of inventory characteristics.
- Limited representation of building characteristics.
- Attributes for high-rise buildings rarely captured by regional statistics used in inventories.

EARTHOUAKE ENGINER

HAZUS®99 AEBM Tech. & User Manual

Building Inventory Updates and Loss Estimation

EARTHQUAKE ENGINEERING

E JOHN A.

Building Inventory Updates and Loss Estimation

Outline

- Background and Motivations
- Objective of the Research
- Loss Estimation Tools, Loss Estimation Methodology and its Shortcomings (example: HAZUS[®])
- Building Inventory Updates and Loss Estimation
- MIHEA: Building Inventory Extraction Tool
- Examples of 3D Models Created by MIHEA
- Loss Estimation Using Updated Inventory Data
- Conclusions
- Future Plans

MIHEA: Building Inventory Extraction Tool

- Mono Image Height Extraction Algorithm
- Software package designed for extracting spatial and structural information
- Single high-resolution satellite images
- Developed at Stanford University in collaboration with ImageCat, Inc.

EARTHOUAKE ENGINEERING

MIHEA:

Building Inventory Extraction Tool - cont'd

- Satellite orientation (azimuth and elevation)
- Rational Function representation of camera model.
- Solve a system of homogeneous, non-linear and over-determined equations

EARTHOUAKE ENGINEER

Examples of 3D models created by MIHEA : London, U.K

Examples of 3D models created by MIHEA : London, U.K – cont'd

EARTHOUAKE ENGINEERING

Examples of 3D models created by MIHEA : Long Beach, CA, USA

Outline

- Background and Motivations
- Objective of the Research
- Loss Estimation Tools, Loss Estimation Methodology and its Shortcomings (example: HAZUS[®])
- Building Inventory Updates and Loss Estimation
- MIHEA: Building Inventory Extraction Tool
- Examples of 3D Models Created by MIHEA
- Loss Estimation Using Updated Inventory Data
- Conclusions
- Future Plans

Loss estimation using updated inventory data : Ground Motion Input

1994 Northridge EQ. (Somerville, et al., 1995)

Loss estimation using updated inventory data : Building Damage States in HAZUS®99

Damage State		Description
	Slight	Small plaster cracks at corners of door and window openings and wall- ceiling intersections; small cracks in masonry chimneys and masonry veneers. Small cracks are assumed to be visible with a maximum width of less than 1/8 inch (cracks wider than 1/8 inch are referred to as "large" cracks).
	Moderate	Large plaster or gypsum-board cracks at corners of door and window openings; small diagonal cracks across shear wall panels exhibited by small cracks in stucco and gypsum wall panels; large cracks in brick chimneys; toppling of tall masonry chimneys.
X	Extensive	Large diagonal cracks across shear wall panels or large cracks at plywood joints; permanent lateral movement of floors and roof; toppling of most brick chimneys; cracks in foundations; splitting of wood sill plates and/or slippage of structure over foundations.
	Complete	Structure may have large permanent lateral displacement or be in imminent danger of collapse due to cripple wall failure or failure of the lateral load resisting system; some structures may slip and fall off the foundation; large foundation cracks. Three percent of the total area of buildings with Complete damage is expected to be collapsed, on average.

HAZUS®99 AEBM Tech. & User Manual (pp. 2-7)

Loss estimation using updated inventory data :

Study Results (1)

TEARTHQUAKE ENGINEERING CENTER

ETH Zurich, Switzerland - August, 28-29, 2006

Loss estimation using updated inventory data : Study Results (4)

Loss estimation using updated inventory data

Conclusions

- Developed a semi-automated tool to create 3D city models from single or stereo RS imagery
- More detailed information on height and footprint area extracted from RS imagery
- Increased the accuracy of building inventory information through
 - Modification of regional inventory statistics
 - Building specific information
- Additional inventory information is shown to result in change of loss estimates.
- As Remote Sensing data become increasingly more available, inventory information can be obtained in an efficient and cost effective manner.

Future Plan

- Currently, a visual inspection method is used to identify structural and occupancy categories. A statistical model to correlate geometric attributes of structures (i.e. height, footprint, proximity and etc.) to structural and occupancy type is being developed.
- Building inventory updates will be validated within the regional loss estimation software.
- Develop a building inventory from RS for a region without existing building information.
- Develop additional tools for near-real time multi-level damage identification using 3D inventory information.

Acknowledgment

- Stanford University-UPS Grants
- National Science Foundation (NSF)
- Multidisciplinary Center for Earthquake Engineering Research (MCEER)
- ImageCat, Inc., Long Beach, CA

Thank You

