Interdisciplinary Workshop on Management of Earthquake Risks

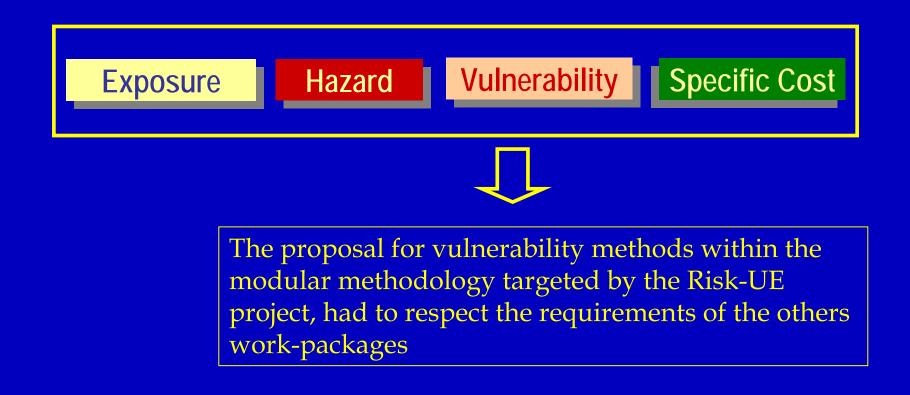
August, 28-29, 2006 ETH Zurich, Switzerland

DAMAGE ASSESSMENT OF CURRENT BUILDINGS AT TERRITORIAL SCALE:

A MECHANICAL MODEL CALIBRATED ON A MACROSEISMIC VULNERABILITY MODEL

Sonia Giovinazzi and Sergio Lagomarsino

University of Genoa


DISEG - Department of Structural and Geotechnical Engineering

5th Framework European Commission Project An advanced approach to earthquake risk scenarios with applications to different European towns

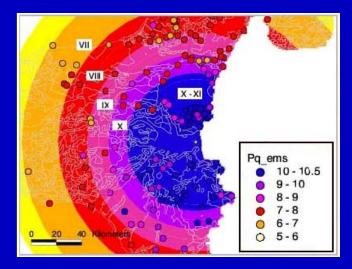
The aim of the projects was to develop <u>a comprehensive modular</u> <u>methodology</u> to create earthquake scenarios and risk analysis, concentrating on the <u>distinctive features of the European cities with regard</u> to current and historical buildings

EXPOSURE

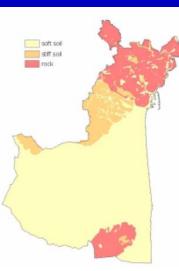
□ *A typological classification system has been assumed judged to account for and to represent the characteristic features of the European building typologies*

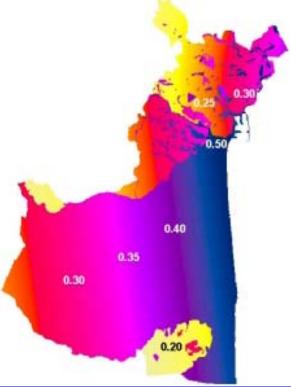
Unre	Unreinforced Masonry			forced/confined masonry			
M1	Rubble stone		M7 Reinforced/confined mas				
M2	Adobe (earth bricks)						
M3	Simple stone		Reinforced Concrete				
M4	Massive stone		RC1	Concrete Moment Frame			
M5	U Masonry (old bricks)		RC2	Concrete Shear Walls			
M6	U Masonry - r.c. floors		RC3 Dual System				

The different availability of data has been considered


Level 0 Number of buildings and statistical knowledge of the main features

Level 1 Existing database with information non specifically surveyed for vulnerability purposes.


Level 2 Detailed information about the typology and the geometrical, structural and technological features from a survey specifically devoted to the vulnerability assessment


HAZARD

Hazard scenarios implemented both in terms of macroseismic intensity and in terms of physical parameters (e.g. PGA peak ground acceleration and response spectra)

EMS intensity distribution for the 1693 earthquake, derived with the attenuation relation of Grandori et al. (1991)

PGA[g] values for 1693 event

three ground profile classes

VULNERABILITY

The state of the art in the field of seismic vulnerability approaches, available for Europe at the starting date of the project, classified vulnerability methods depending on their genesis

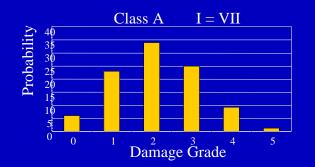
Observational methods:

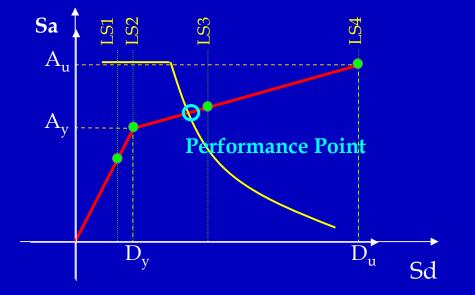
DPM (Damage Probability Matrix), based on observed vulnerability. Implicitly contained in the macroseismic scale definition

Seismic input:

Intensity

Damage rapresentation:


Observed damage 5 damage grades: D1 - D5


Mechanical methods:

Capacity Spectrum Method: vulnerability represented by building capacity curve; demand-capacity comparison ⇒ performance evaluation Seismic input: ADRS – Acceleration Displacement Response Spectra Damage representation:

4 Damage Limit States (performance levels)

	V	VI	VII	VIII	IX	X
0	0,90	0,18	0,06	1,5E03	5,4E05	2,7E06
1	0,092	0,37	0,23	2,0E02	1,6E03	1,6 E 04
2	0,038	0,296	0,34	0,108	2,0E02	3,9E03
3	7,6E05	0,117	0,25	0,287	0,12	4,6E02
4	7,8E07	0,023	9,2E02	0,38	0,38	0,28
5	3,2E09	0,0018	1,3E02	0,20	0,47	0,67

Non-linear equivalent s.d.o.f. structure Capacity Curve

Acceleration-Displacement Response Spectrum

VULNERABILITY

The state of the art in the field of seismic vulnerability approaches, available for Europe at the starting date of the project , classified vulnerability methods depending on their genesis

Observational methods:	Mechanical methods:
DPM (Damage Probability Matrix), based on	Capacity Spectrum Method: vulnerability represented
observed vulnerability. Implicitly contained in	by building capacity curve; demand-capacity
the macroseismic scale definition	$comparison \Rightarrow performance evaluation$
Seismic input:	Seismic input:
Intensity	ADRS – Acceleration Displacement Response Spectra
Damage rapresentation:	Damage representation:
Observed damage 5 damage grades: D1 - D5	4 Damage Limit States (performance levels)

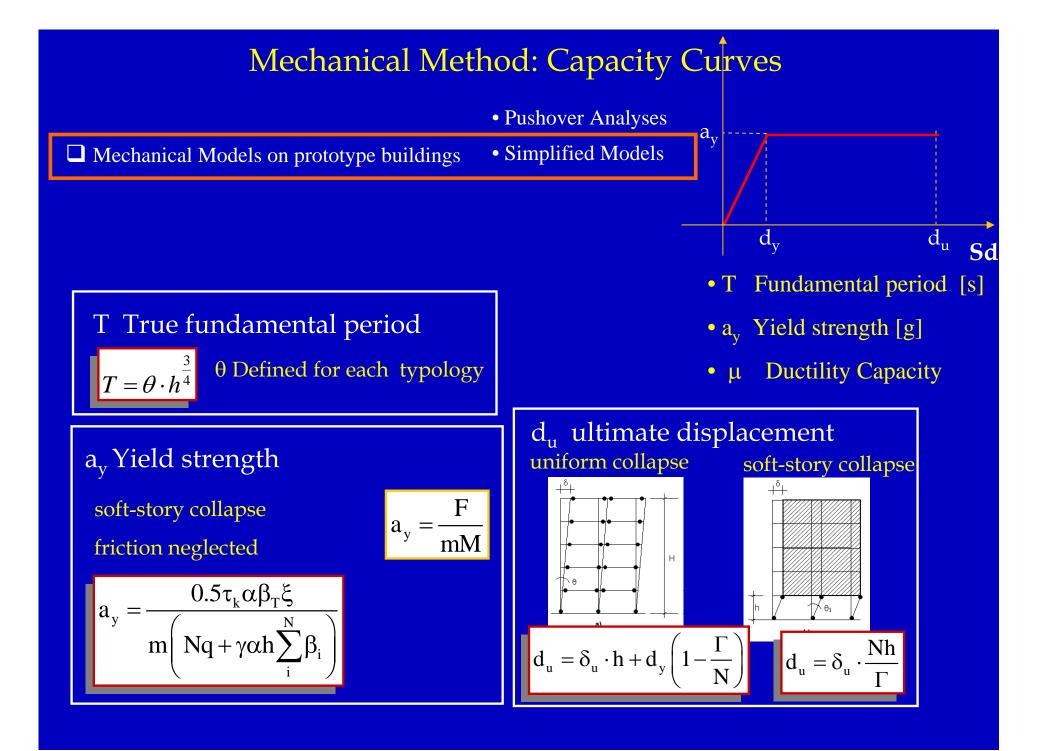
• The macroseismic method was originally developed by the authors (Giovinazzi and Lagomarsino, 2004) from the definition provided by the European Macroseismic scale EMS-98 (Grunthal, 1998)

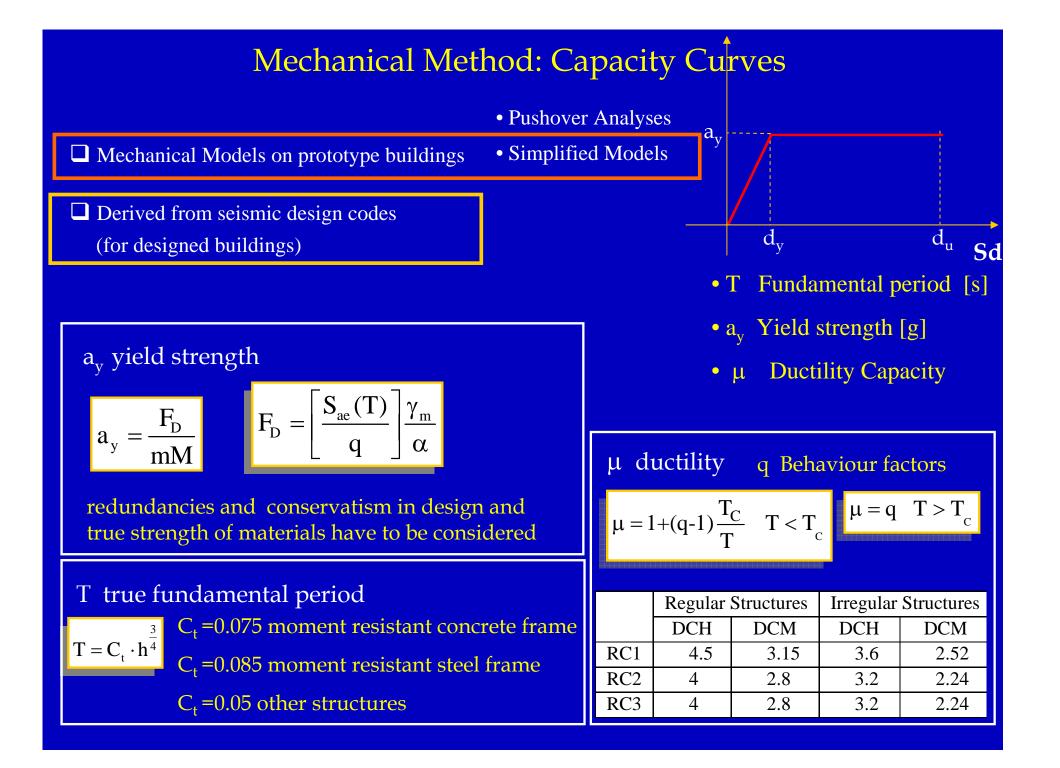
 A capacity spectrum-based method was proposed, with capacity curves specifically definided for the European building typologies

The proposed vulnerability methods have been compared and cross-validated

Mechanical Method: Capacity Curves

Mechanical Models on prototype buildings

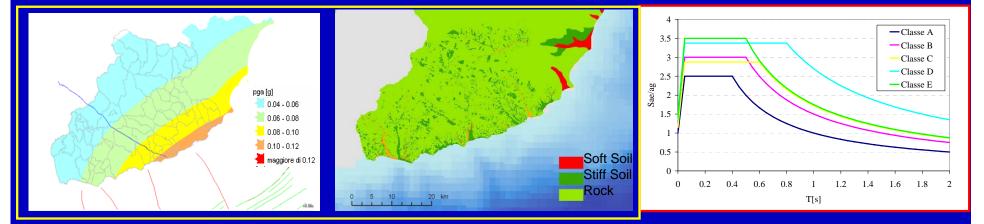

Simplified Models



- a_v Yield strength [g]
- µ Ductility Capacity

The Capacity Curve parameters have been evaluated on the basis of factors able to identify the Building Typology with regard to:

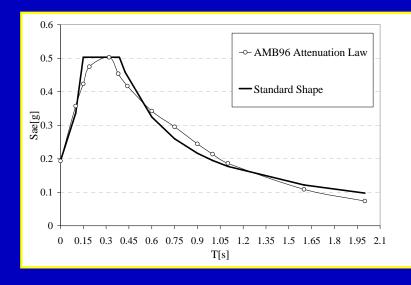
Geometrical features	Technological features	Dynamic behaviour
N - Floor Number	τ_{K} characteristic shear	<i>m</i> modal mass coefficient
<i>h</i> inter-story height	strength	Γ modal participation factor
α , β_{T} resistant area	γ material density	δ_{u} ultimate drift
	q m ² floor load	



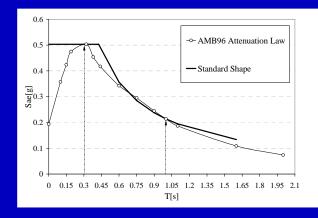
Mechanical Method: Hazard Description

The use of simplified mechanical approach in the framework of a seismic risk analysis requires an hazard description in terms of an elastic response spectra $S_{ae}(T)$ with a characteristic period T_C separating the periods of almost spectral acceleration (T<T_C) by the almost constant spectral velocity range (T>T_C).

 \Box Anchoring to hazard analysis, provided in terms of peak ground acceleration a_g predefined spectral shapes related to the local soil conditions.



Mechanical Method: Hazard Description

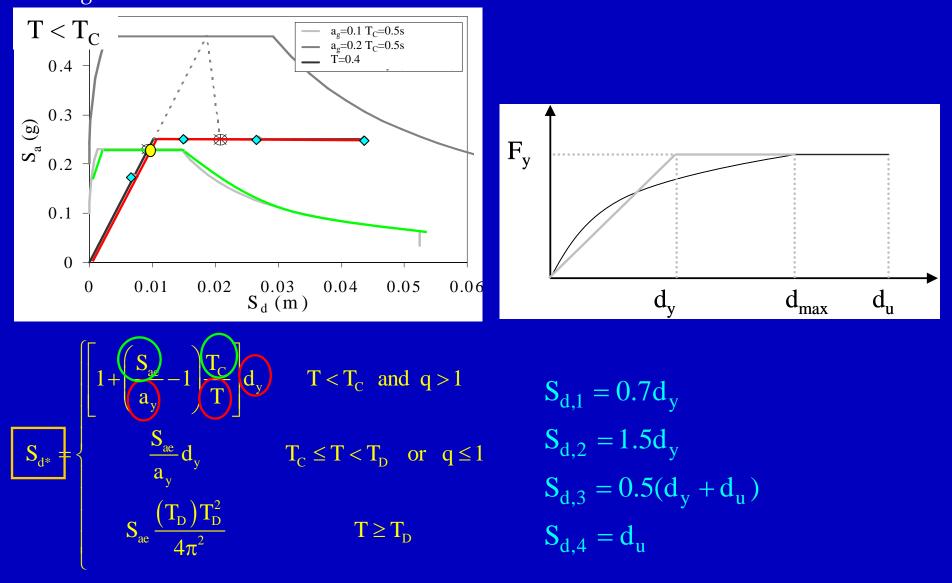

The use of simplified mechanical approach in the framework of a seismic risk analysis requires an hazard description in terms of an elastic response spectra $S_{ae}(T)$ with a characteristic period T_C separating the periods of almost spectral acceleration (T<T_C) by the almost constant spectral velocity range (T>T_C).

 \Box Anchoring to hazard analysis, provided in terms of peak ground acceleration a_g predefined spectral shapes related to the local soil conditions.

□ Fitting response spectra discrete values with a standard spectral shape.

 $A_{PE} = \frac{1}{2} \sum_{i=1}^{n-1} (S_{ae(T_{i+1})} + S_{ae(T_{i})})(T_{i+1} - T_{i})$

$$S_{ae}(T) = \begin{cases} S_{ae(T=0.3)} & 0 \le T \le T_{C} \\ S_{ae(T=0.3)} \frac{T_{C}}{T} & T_{C} < T \le T_{D} \end{cases}$$


 $S_{ae(T=1)}$

 $A_{SS} = 0.075(S_{ae(T=0)} + S_{ae(T=0.15)}) + (T_{C} - 0.15)S_{ae_{max}} + (ln(2) - ln(T_{C}))T_{C}S_{ae_{max}}$

Mechanical Method: performance point evaluation

A seismic demand reduction is performed in order to take into account the inelastic behaviour of the building INELASTIC SPECTRA

Easier and the more direct. It has to be preferred to overdamped spectra dealing with Bilinear Capacity Curves

Mechanical Method: fragility curves and damage distributions $S_{d,1} = 0.7d_y$ Performance Point Hazard: a, \Rightarrow S_{d*} $S_{d,2} = 1.5d_{v}$ Site Effects: $T_{C}s$ Vulnerability : ay,T,.µ $S_{d,3} = 0.5(d_v + d_u)$ $S_{d,4} = d_u$ FRAGILITY CURVES **DAMAGE DISTRIBUTION** 0.9 0.8 0.7 $\mathbf{P}_{k=1\div3} = P \left[\mathbf{D}_{k} \left| S_{d^{*}} \right] - P \left[\mathbf{D}_{k+1} \left| S_{d^{*}} \right] \right]$ P(D>Dk) 0.6 0.5 0.4 $\mathbf{P}_0 = 1 - P \left[\mathbf{D}_1 \left| S_{d^*} \right] \right]$ 0.3 0.2 0.1 $\mathbf{P}_4 = P \left[\mathbf{D}_4 \left| S_{d^*} \right] \right]$ $^{0.9}a^{1}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 $P\left[D_{k}\left|S_{d^{*}}\right] = \Phi\left[\frac{1}{\beta_{k}}\ln\left(\frac{S_{d^{*}}}{S_{d,k}}\right)\right]$

Mechanical Method: consequences estimation

	Damaged buildings	 100% of buildings suffering D₃ 60% of buildings suffering D₂
Consequences on buildings	Unfit for use buildings	 100% of buildings suffering D₄ 40% of buildings suffering D₃
	Collapsed buildings	100% of buildings suffering D ₅
Consequences	Homeless	 100% of people living in Unfit for use buildings + 70% of people living in Collapsed buildings
on people	Dead people and heavy injured	30% of people living in Collapsed buildings

Economic losses are measured in terms of the damage factor (DF), defined as the ratio between the repair cost and the reconstruction cost (corresponding to the building value)

DF ₁	DF ₂	DF ₃	DF ₄	DF ₅
0.01	0.1	0.35	0.75	1

$$MDR = DF = \frac{Repair Cost}{Building Value}$$

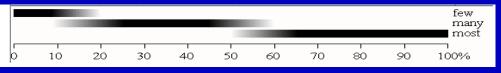
Macroseismic Method - EMS 98 Macroseismic Scale

<u>Six vulnerability classes (from A to F) of decreasing vulnerability</u>: A, B and C classes of ordinary buildings designed without explicit control of seismic resistance; D, E and F classes of buildings with levels of progressively increasing protection.

Class A												
Damage grade	1	2	2	Л	5							
Intensity	1	2	3	4	5							
V	Few											
VI	Many	Few										
VII			Many	Few								
VIII				Many	Few							
IX					Many							
Х					Most							
XI					All							
XII												

A discrete five damage grade scale Dk k=1÷5)

GRADE 1: Negligible to slight damage



GRADE 2: Moderate damage

GRADE 3: Substantial to heavy damage

The meaning of the adjectives ("few", "many", "most") used for the description of the frequencies of damaged buildings, is qualitatively suggested by the scale in a graphical fuzzy manner

Very heavy damage

GRADE 4:

GRADE 5: Destruction

Macroseismic Method – Damage Probability Matrices

• The complete description of the damage distribution has been obtained via a linguistic extension, according to two different criteria.

		Class B											1) t	h						
	D ₀		D ₁		D ₂		D ₃		D ₄		D ₅		gra frec							
V	All-few	/	Few	7	none	e	none	;	none	e	none	;	ass	÷.						
VI	Most- 8/3few	,	Man	y Few		7	none r		none		none	;	2)	f						
VII	3few		man	y	Man	y	Few		none	e	none	;	ro	M						
VIII	few		2fev	V	man	y	Many	/	Few		none	;	the							
IX	none		few	1	2fev	V	many	1	Many		Many		Few		sh	0				
Х	none		none	e	few		3few	,	many		Many	y								
XI	none		none	e	none	e	few		2few		2few		Mos	t						
	0		1		2		3	4			5		μ_{D}							
V	92.5	7	.5	0)	0)	0		0			0.08							
VI	57.5	3	5	7	.5	0)	0	0				0.50							
VII	22.5	3	5	3	5	7	.5	0	0		0		0		0				1.28	
VIII	7.5	1	5	3	5	3	5	7	.5	0			2.20							
IX	0	7	.5	1	5	3	5	3	5		.5		3.20							
Х	0	0		7	.5	2	2.5	3	5		5		3.98							
XI	0	0		0		7	.5	1	5	7	7.5		4.70							

1) the scale explicitly gives the frequencies of grades of greater damage, thus the linguistic frequency "none" (i. e. numerically 0) is here assumed, for all higher grades of damage.

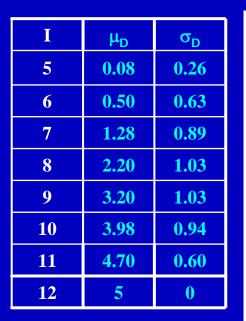
2) for lower grades, the extension of every row has been performed in such a way that the sum of the expected white percentages should be in any case equal to 100.

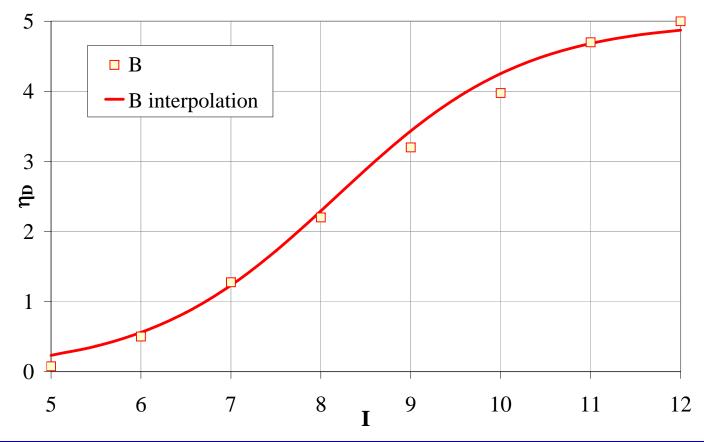
 $\sigma_{\rm D}$

0.26

0.63

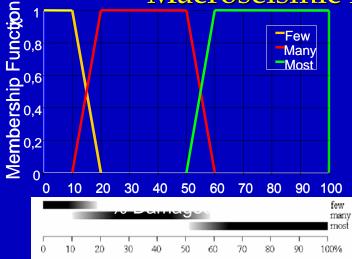
0.89

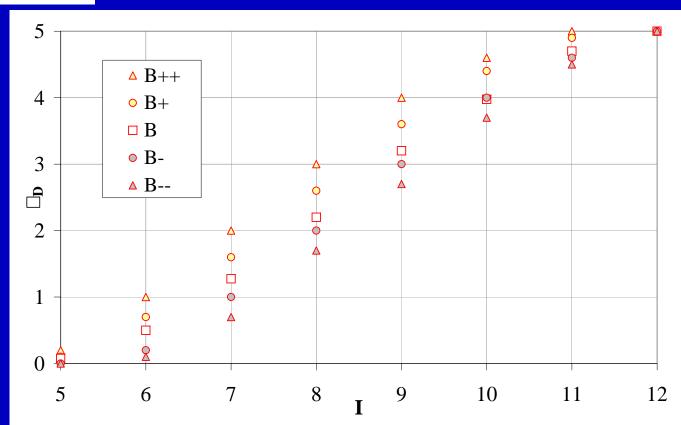

1.03

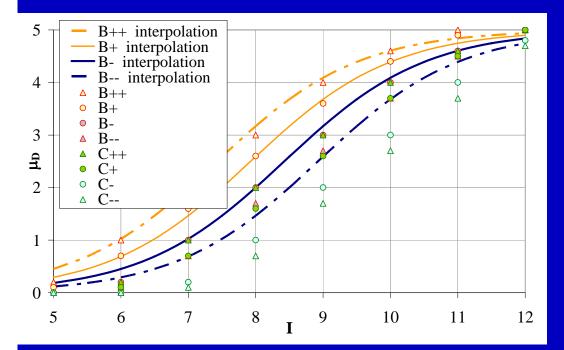

1.03

0.94

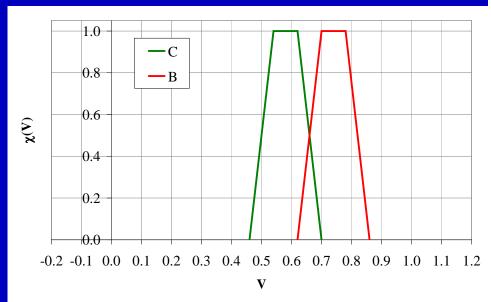
0.60

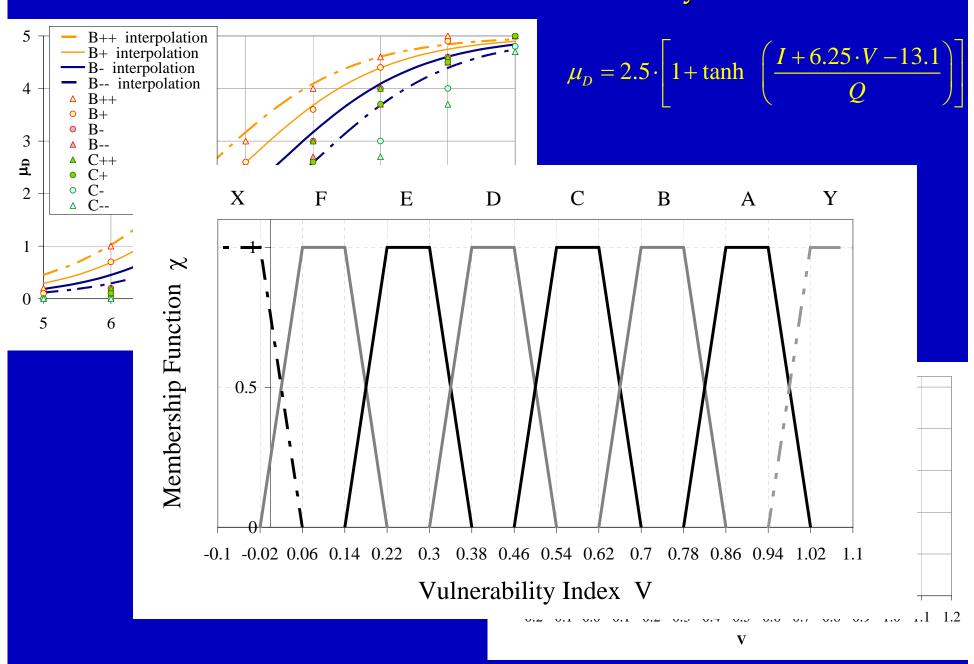

Few	7.5
Many	35
Most	77.5




$$\mu_D = 2.5 \cdot \left[1 + \tanh \left(\frac{I + 6.25 \cdot V - 13.1}{Q} \right) \right]$$

The macroseimic intensity is regarded as a continuous parameters



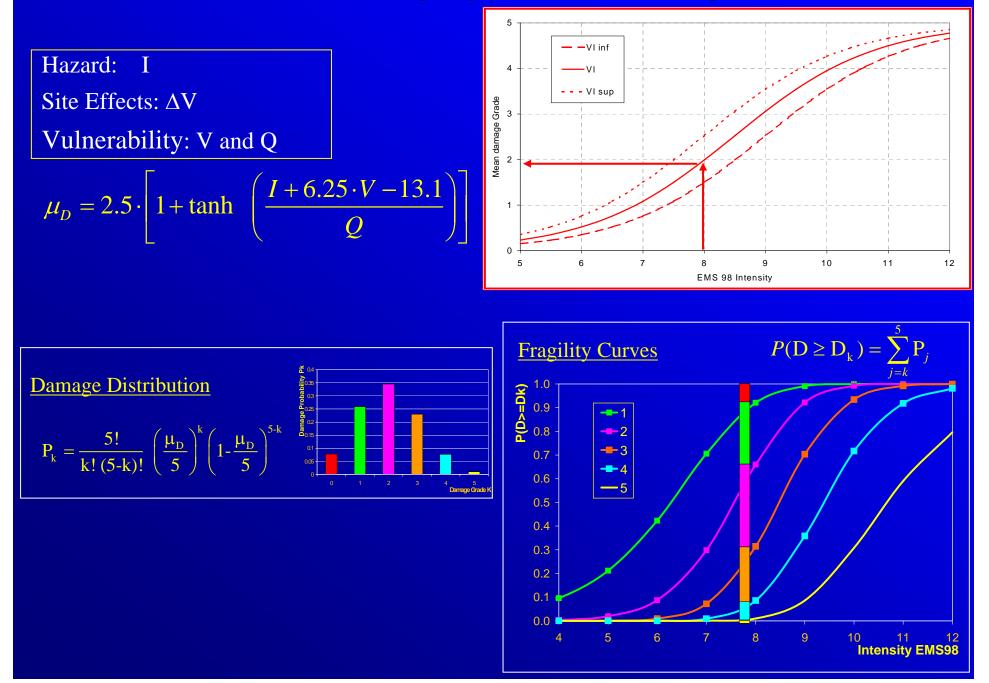

a-cuts	Label	few	many	most
$\alpha=0$ (upper bound)	++	20	60	100
$\alpha = 1$ (upper bound)	+	10	50	100
$\alpha = 0.5$ (mean value)		7.5	35	77.5
$\alpha = 1$ (lower bound)	-	0	20	60
$\alpha = 0$ (lower bound)		0	10	50

$$\mu_D = 2.5 \cdot \left[1 + \tanh \left(\frac{I + 6.25 \cdot V - 13.1}{Q} \right) \right]$$

Macroseismic Method for Building Typologies

	Type of Structure	Vı A	ılne B	rab C	ility D	Cla E	ass F
MASONRY	rubble stone, fieldstone adobe (earth brick) simple stone massive stone unreinforced, with manufactured stone units unreinforced, with RC floors reinforced or confined	00+	1 0 F 0 F	00			
ST EEL REINFORCED CONCRETE (RC)	frame without earthquake-resistant design (ERD) frame with moderate level of ERD trame with high level of ERD walls without ERD walls with moderate level of ERD walls with high level of ERD	ŀ		0 + 0 +			
STEEL	steel structures			ŀ		0	-1
DOOM	timber structures		ŀ		0	-1	

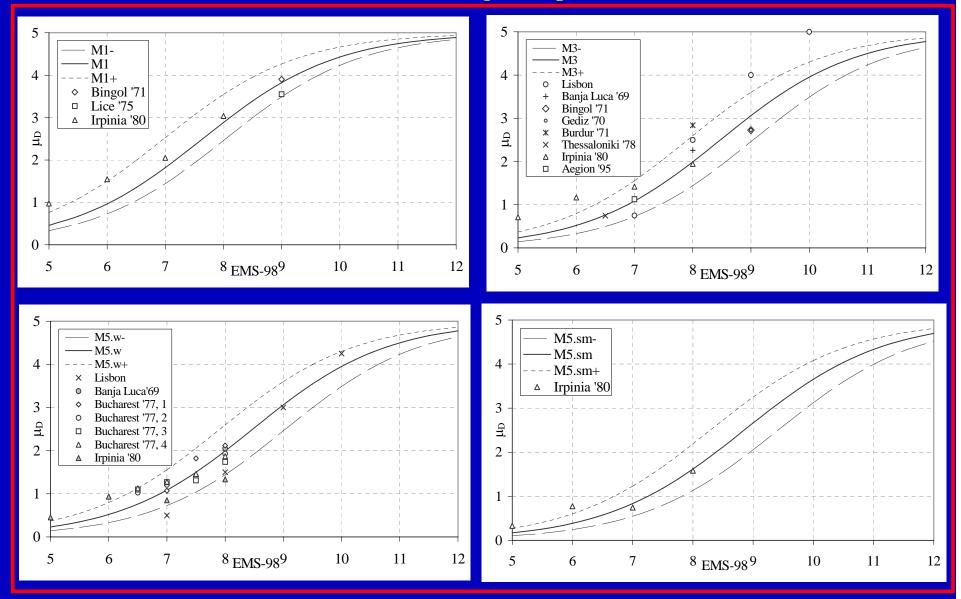
Omost likely vulnerability class; — probable range;range of less probable, exceptional cases

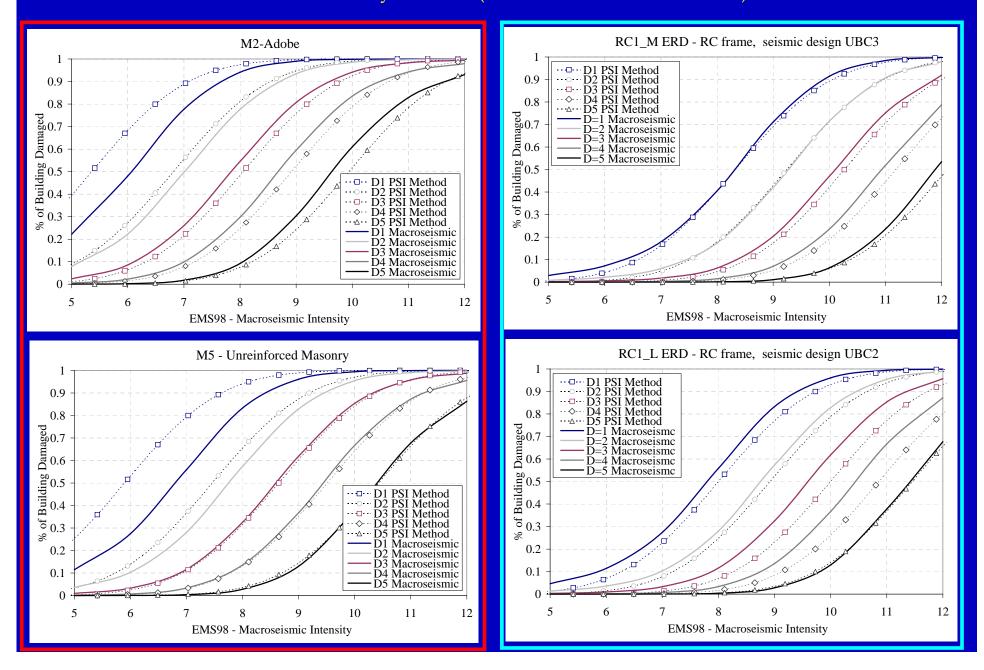

$$\mathbf{V} = \mathbf{V}^* + \Delta \mathbf{V}_{\mathrm{m}} + \Delta \mathbf{V}_{\mathrm{r}} + \Delta \mathbf{V}_{\mathrm{s}}$$

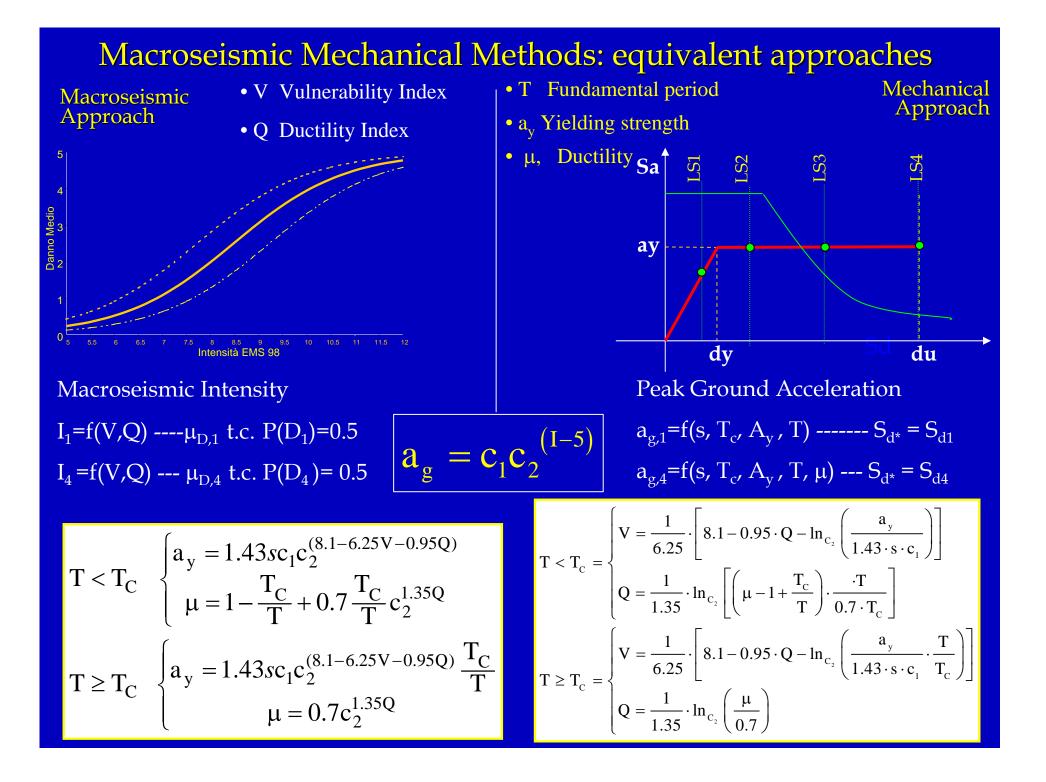
EMS-98 provide the information about the prevalent vulnerability class ("most likely") and in case point out the "probable" and the "less probable, exceptional"

The information at the basis of the EMS-98 Vulnerability Table, describing the distribution in terms of vulnerability classes Cj (j 0 1 to 6) for each building typology Ti, can be interpreted as a distribution of relative frequencies:

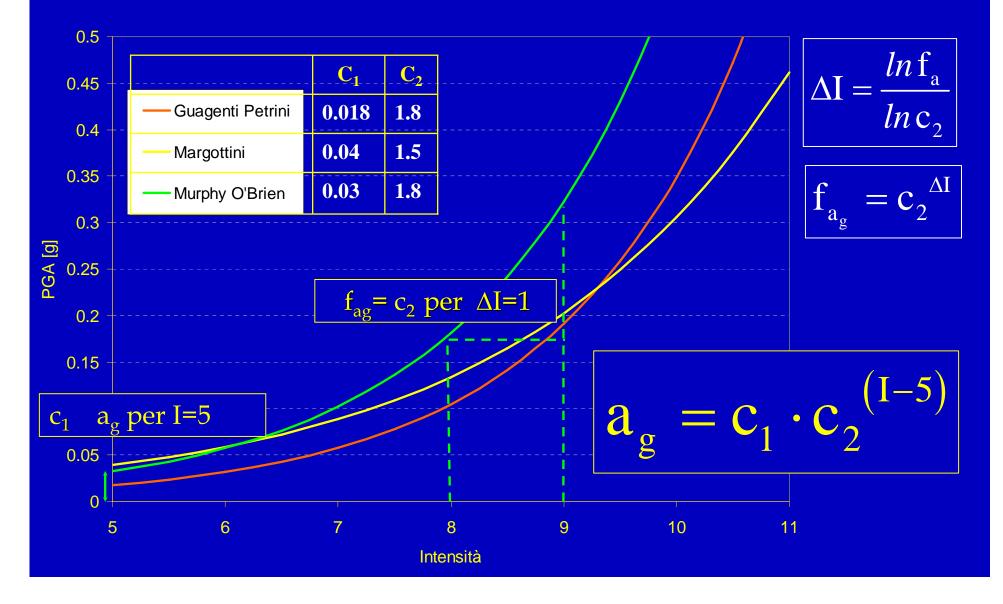
L	Less Probable		Few	7.5	7.5				
P	Probable			3 Few	22	22.5			
N	/lost	Like	ely						
Тур	pologie	s	Building type			V	_	V	V ⁺
		M1	Rubble stone	Rubble stone			1	0.873	0.98
		M2	Adobe (earth bric	Adobe (earth bricks)			37	0.84	0.98
nry –		M3	Simple stone	Simple stone			5	0.74	0.83
Masonry		M4	Massive stone	Massive stone			9	0.616	0.793
Ϋ́		M5	U Masonry (old b	oricks)		0.6	5	0.74	0.83
		M6	U Masonry - r.c.	U Masonry - r.c. floors				0.616	0.79
		M7	Reinforced /confi	Reinforced /confined masonry				0.451	0.633
		RC1	Frame in r.c. (wit	hout E.R.D)		0.4	9	0.644	0.8
ed	e	KUI	Frame in r.c. (mo	derate E.R.D.)		0.3	3	0.484	0.64
orc	Reinforced Concrete		Frame in r.c. (hig	h E.R.D.)		0.1	7	0.324	0.48
inf		DCO	Shear walls (with	U ,			57	0.544	0.67
Re		RC2	Shear walls (mod	erate E.R.D.)		0.2	1	0.384	0.51
			Shear walls (high	E.R.D.)		0.04	47	0.224	0.35


Macroseismic Method: fragility curves and damage distributions


Macroseismic Method: validation


Observed Damage Data

Different European regions


Macroseismic Method : validation PSI Vulnerability Method (COBURN & SPENCE, 2002)

Macroseismic Mechanical Methods: equivalent approaches

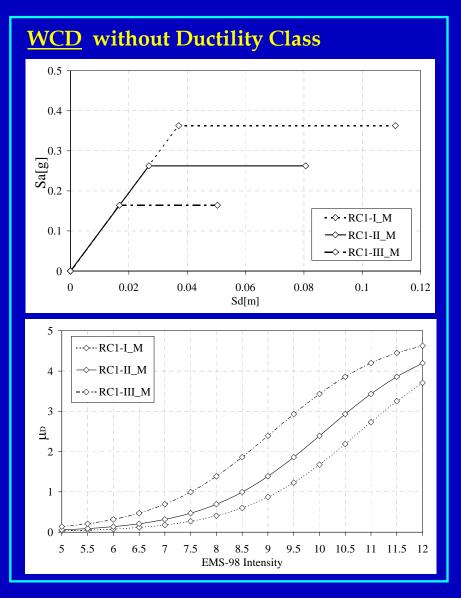
For the mechanical method a predefined spectral shape related to soil conditions is assumed Correlation between intensity I and peak ground acceleration a_g .

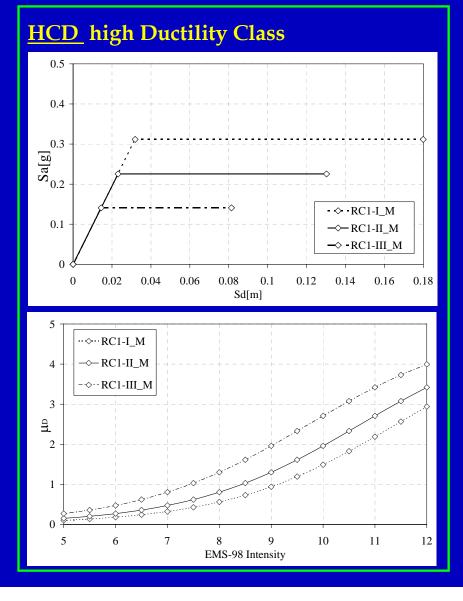
Macroseismic Mechanical Methods: equivalent approaches

The macroseimic and the mechanical models provide comparable results The cross validation between the macroseimic and the mechanical-based methods allow improvements for both

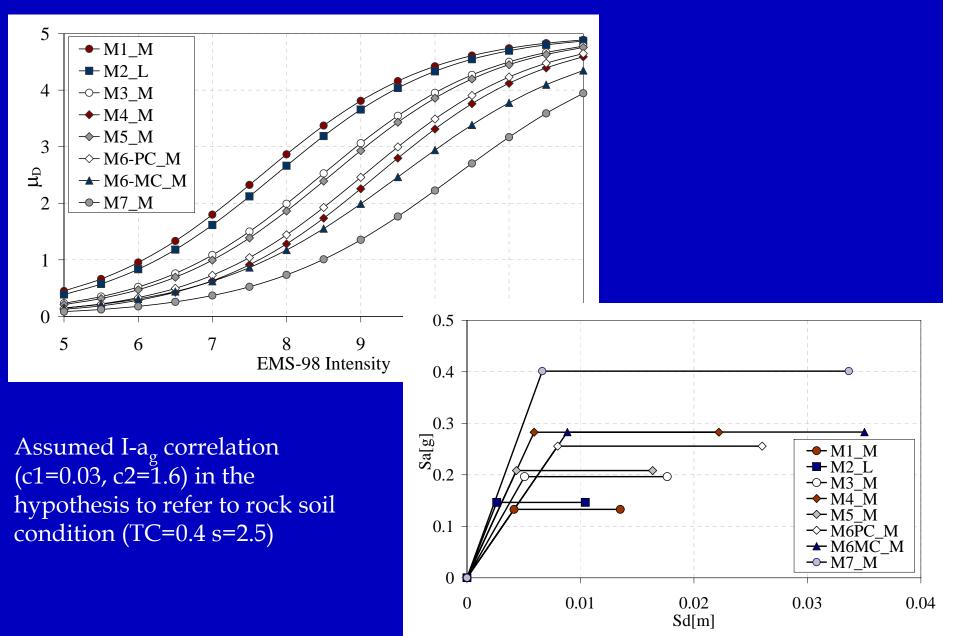
THE MECHANICAL MODEL

- The reliability of assumed force-based capacity curves can be cross-validated on the basis of real observed damage data
- Possible over or under estimation of the building capacity due to element that have not been accounted for (i.e, non structural elements, further design safety coefficients) can be noticed and reduced by the comparison with the macroseismic approach

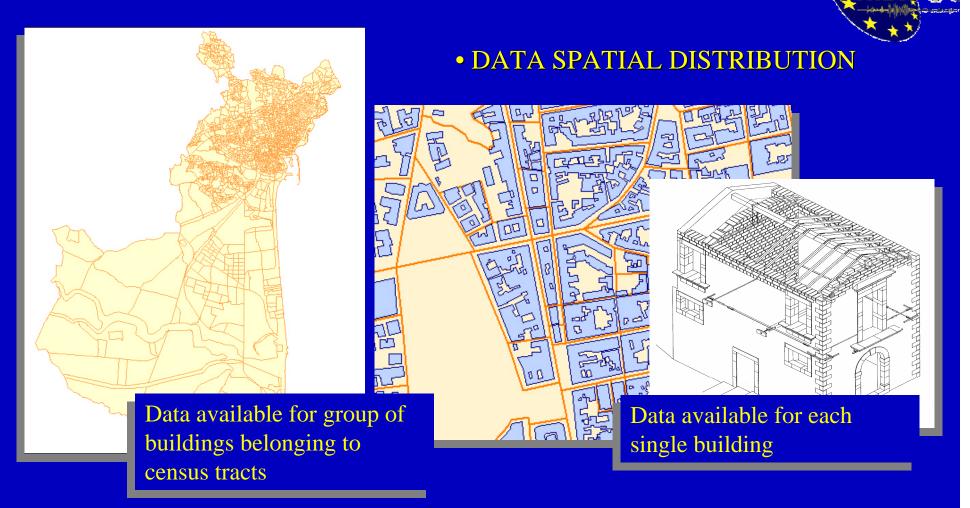

THE MACROSEISMIC MODEL


- <u>Behavior modifier</u> and values of the <u>ductility indexes</u> Q for the definition of the macroseismic method can be derived
- Refinements in the definition of the mechanical model based on numerical/experimental analysis results can be directly implemented ("translated") into the equivalent macroseismic model

Macroseismic Mechanical Methods: equivalent approaches


RC1 – Concrete Moment Frame

Different Levels of Earthquake Resistant Design



Macroseismic Mechanical Methods: equivalent approaches MASONRY BUILDING TYPOLOGYS

	BTM	V	Q	Т	a _v	μ	d _v	d _u
M	M1_L	0.79	2.3	0.211	0.168	4.79	0.0019	0.0089
	M1_M	0.87	2.3	0.355	0.133	3.25	0.0042	0.0135
	M1.w_L	0.77	2.3	0.211	0.178	4.79	0.0020	0.0094
M1	M1.w_M	0.85	2.3	0.355	0.141	3.25	0.0044	0.0143
	M1.v_L	0.87	2.3	0.211	0.132	4.79	0.0015	0.0070
	M1.v_M	0.95	2.3	0.355	0.105	3.25	0.0033	0.0107
	M2_L	0.84	2.3	0.268	0.146	3.98	0.0026	0.0104
M2	M2.w_L	0.82	2.3	0.268	0.155	3.98	0.0028	0.0111
	M2.v_L	0.92	2.3	0.268	0.116	3.98	0.0021	0.0082
	M3_L	0.66	2.3	0.192	0.248	5.17	0.0023	0.0117
	M3_M	0.74	2.3	0.322	0.196	3.48	0.0051	0.0176
	M3_H	0.82	2.3	0.437	0.142	3.00	0.0067	0.0202
	M3.w_L	0.64	2.3	0.192	0.263	5.17	0.0024	0.0124
	M3.w_M	0.72	2.3	0.322	0.208	3.48	0.0054	0.0187
M3	M3.w_H	0.80	2.3	0.437	0.151	3.00	0.0071	0.0214
M15	M3.v_L	0.74	2.3	0.192	0.196	5.17	0.0018	0.0093
	M3.v_M	0.82	2.3	0.322	0.155	3.48	0.0040	0.0140
	M3.v_H	0.90	2.3	0.437	0.112	3.00	0.0053	0.0160
	M3.sm_L	0.60	2.3	0.192	0.296	5.17	0.0027	0.0140
	M3.sm_M	0.68	2.3	0.322	0.234	3.48	0.0060	0.0210
	M3.sm_H	0.76	2.3	0.437	0.170	3.00	0.0080	0.0241

Vulnerability Methods Implementation for Catania Town

• DATA ORIGIN

Existing data base, with generic information

Data surveyed for vulnerability assessment

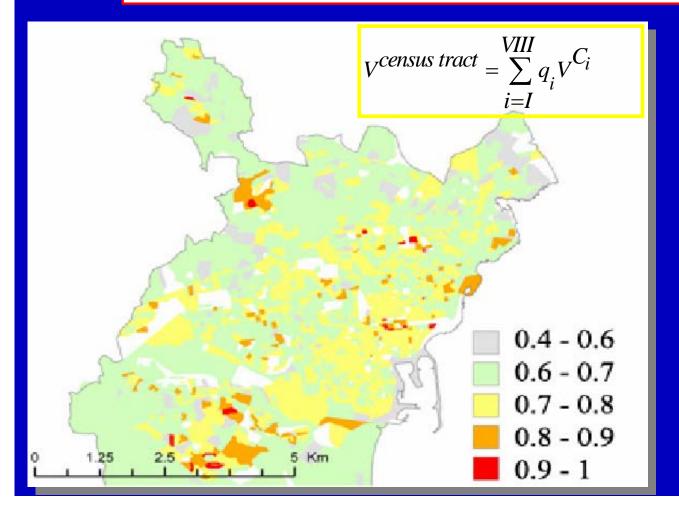
Macroseismic Method Implementation with statistical data **RISK-UC** available on census tracts

Structural Typology	Building Age	Floor Numbers	Structural Context State of Maintenance
Masonry Reinforced Concrete Piloty Other Typologies	Age< 1919 1919 <= Age <= 1945 1946 <= Age <= 1960 1961 <= Age <= 1971 1972 <= Age <= 1981 Age > 1981	1 - 2 floors 3, 4 - 5 floors >6 floors	Isolated Building Good Aggregated Building Bad

$$V_o^C = \sum_t p_t V_o^T \qquad \Delta V_m = \sum_k q_k \cdot V_{m,k}$$

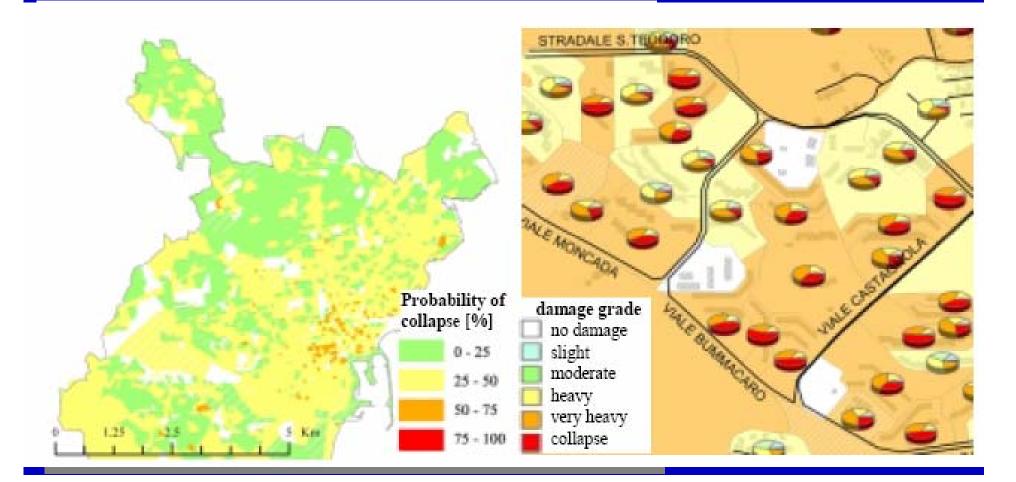
		Masonry		
Category	Age	V ₀ ^c		
Ι	<1919	0.799		
II urban	1919-1945	0.713		
II rural	1919-1945	0.738		
III	1946-1971	0.658		
IV	>1971	0.616		

Macroseismic Method Implementation with statistical data **RISK** available on census tracts


Structural Typology	Building Age	Floor Numbers	Structural Context	State of Maintenance	
Masonry Reinforced Concrete Piloty Other Typologies	Age< 1919 1919 <= Age <= 1945 1946 <= Age <= 1960 1961 <= Age <= 1971 1972 <= Age <= 1981 Age > 1981	1 - 2 floors 3, 4 - 5 floors >6 floors	Isolated Building Aggregated Building	Good g Bad	

$$V_o^C = \sum_t p_t V_o^T \qquad \Delta V_m = \sum_k q_k \cdot V_m,$$

Vulnerability Factors	Parameters	Masonry Categories				
	1 arameters	Ι	II	III	IV	
State of Maintenance	Good	-0.04	-0.03	-0.02	-0.02	
	Bad	+0.04	+0.03	+0.02	+0.02	
	Low (1 - 2 floors)	-0.04	-0.04	-0.04	-0.04	
Floor number	Medium (3, 4 - 5 floors)	0	0	0	0	
	High (> 5 floors)	+0.04	+0.04	+0.04	+0.04	
A gamagata building	Isolated building	-0.02	-0.02	-0.02	-0.02	
Aggregate building	Aggregated building	+0.02	+0.02	+0.02	+0.02	
Earthquake Resistant Design	0	0	0	-0.08		


Macroseismic Method Implementation with statistical data available on census tracts

$$V = V^{*} + \sum_{k} q_{k} \Delta V_{m} + \sum_{k} r_{k} \Delta V_{r} + \sum_{j=1}^{3} \sum_{S=B}^{E} m_{j} \Delta V_{s_{M,j}} + \sum_{j=1}^{3} \sum_{S=B}^{E} rc_{j} \Delta V_{s_{RC,j}}$$

Macroseismic Method Implementation with statistical data available on census tracts

$$V = V^{*} + \sum_{k} q_{k} \Delta V_{m} + \sum_{k} r_{k} \Delta V_{r} + \sum_{j=1}^{3} \sum_{S=B}^{E} m_{j} \Delta V_{s_{M,j}} + \sum_{j=1}^{3} \sum_{S=B}^{E} rc_{j} \Delta V_{s_{RC,j}}$$

Macroseismic and mechanical methods implementation with specific surveyed data available for each single building

- V_0
- Typological Vulnerability Index

Behaviour Modifier Factor

	Vertical Structures	Horizontal Str u ctures	Age	Subs e quent Intervention
M1	A-E-T			
M2	B-C-F			
1012			<1945	
M3	D-G			
M4	L-M-H-I	A-B		
1014	L-M-H-I		<1919	
M5	L-M	F-G		
M6	L-M-H-I	C-D		
WIO	L-M		<1945	
M7	L-M-H-I			
	H- I			
	L-M		>1946	
			>1946	

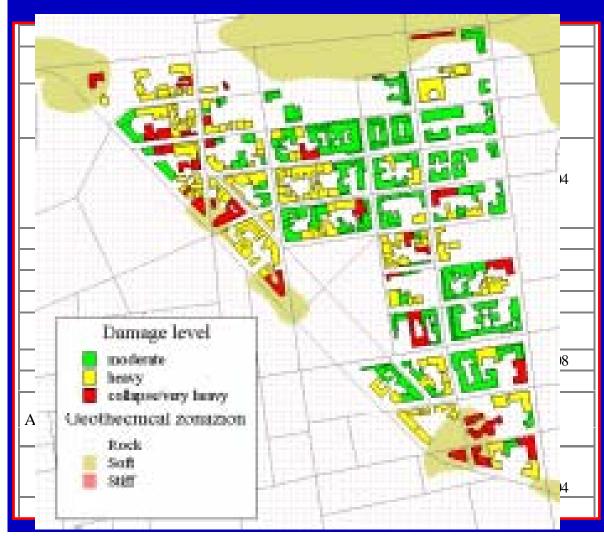
Example of quick survey form Aggregate code Building code House number Number of floors H_{MAX} H_{MIN} Use (residential, production..) Age Subsequent intervention Vertical structure type Horizontal structure type Roof structure type Connection between structural elements Non structural elements **Building condition**

Macroseismic and mechanical methods implementation with specific surveyed data available for each single building

Typological Vulnerability Index

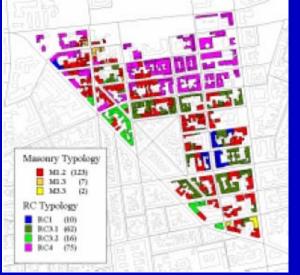
Behaviour Modifier Factor

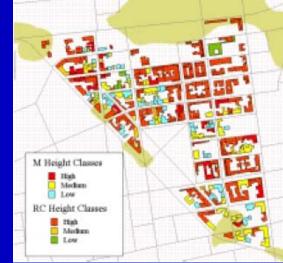
Vulnerability Factors	Parameters	
State of preservation	Good maintenance	-0,04
State of preservation	Bad maintenance	+0.04
	Low (1 or 2)	-0.02
Number of floors	Medium (3, 4 or 5)	+0.02
	High (6 or more)	+0.06
	Wall thickness	
	Distance between walls	0.04 0.04
Structural system	Connection between walls	-0,04 ÷ +0,04
	(tie-rods, angle bracket)	
	Connection horizontal structures-walls	
Soft-story	Demolition/ Transparency	+0.04
Plan Irregularity		+0.04
Vertical Irregularity		+0.02
Superimposed floors		+0.04
Roof	Roof weight + Roof Thrust	+0.04
	Roof Connections	10.01
Retrofitting interventions		$-0,08 \div +0,08$
Aseismic Devices	Barbican, Foil arches, Buttresses	
	Middle	-0.04
Aggregate building: position	Corner	+0.04
	Header	+0.06
Aggregate building:	Staggered floors	+0.02
elevation	Buildings of different height	-0,04 ÷ +0,04
Foundation	Different level foundation	+0.04


Example of quick survey form Aggregate code Building code House number Number of floors H_{MAX} H_{MIN} Use (residential, production..) Subsequent intervention Vertical structure type Horizontal structure type Roof structure type Connection between structural elements Non structural elements **Building** condition

Macroseismic and mechanical methods implementation with specific surveyed data available for each single building

Typological Vulnerability Index


Behaviour Modifier Factor


 V_0

Example of quick survey form					
Aggregate code					
Building code					
House number					
Number of floors					
H _{MAX}					
H _{MIN}					
Use (residential, production)					
Age					
Subsequent intervention					
Vertical structure type					
Horizontal structure type					
Roof structure type					
Connection between structural elements					
Non structural elements					
Building condition					

Mechanical methods implementation with specific surveyed data available for each single building

Identification of building type and height for the Catania test zone

Distribution of average damage level

Italian National research project "Earthquake scenario in Western Liguria, Italy, and strategies for the preservation of historic centres"

Civil

Protection

National Institute for Geophysics and Department Vulcanology

National Group for the Defense from Earthquakes

Simulation of Western Liguria - 23 February 1887 earthquake

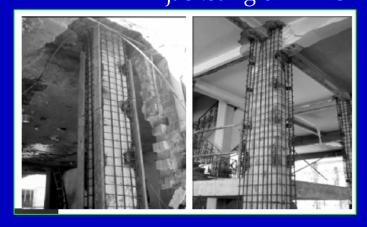
Macroseismic Scenario

	1887 - Macroseimic							
CONSEQUENCES ON BUILDINGS	Masonry	<i>R.c.</i>	All	%				
Unfit for use building	3775	563	4337	8.8				
Collapsed Building	208	15	223	0.5				
CONSEQUENCES ON PEOPLE	Mason	0 0/	All	%				
People requiring short term shelter	10317	.2%	17017	8.1				
Dead and severely injured people	182	71	253	0.1				

Mechanical Scenario

	1887 - Mechanical				
CONSEQUENCES ON BUILDINGS	Masonry	<i>R.c.</i>	All	%	
Unfit for use building	4706	1102	5808	11.8	
Collapsed Building	530	69	599	1.2	
CONSEQUENCES ON PEOPLE	Masonry	R.c.	All	%	
People requiring short term shelter	14150 0.6%		25477	12.1	
Dead and severely injured people	552	J.O 70	801	0.4	

	Number				Percentage	
	All	R.c.	Masonry		Rc	М
Number of Buildings	49372	17733	31639		36%	64%
Number of Hinabitants	211349	126616	84733		60%	40%



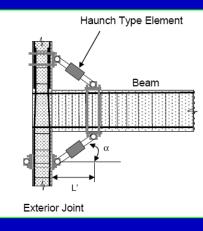
- 509 dead over a population of 49.000 people (thus 1% of the whole population)
- 212 people dead because of the roof collapse of the church in Baiardo
- 0.6% of the population inside ordinary buildings

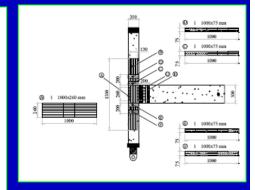
Alternative retrofit solutions and strategies for pre'70 R.C. buildings

Retrofit Solutions:

- Conventional Techniques
- · braces - jacketing or infills

TARGETED OBJECTIVES

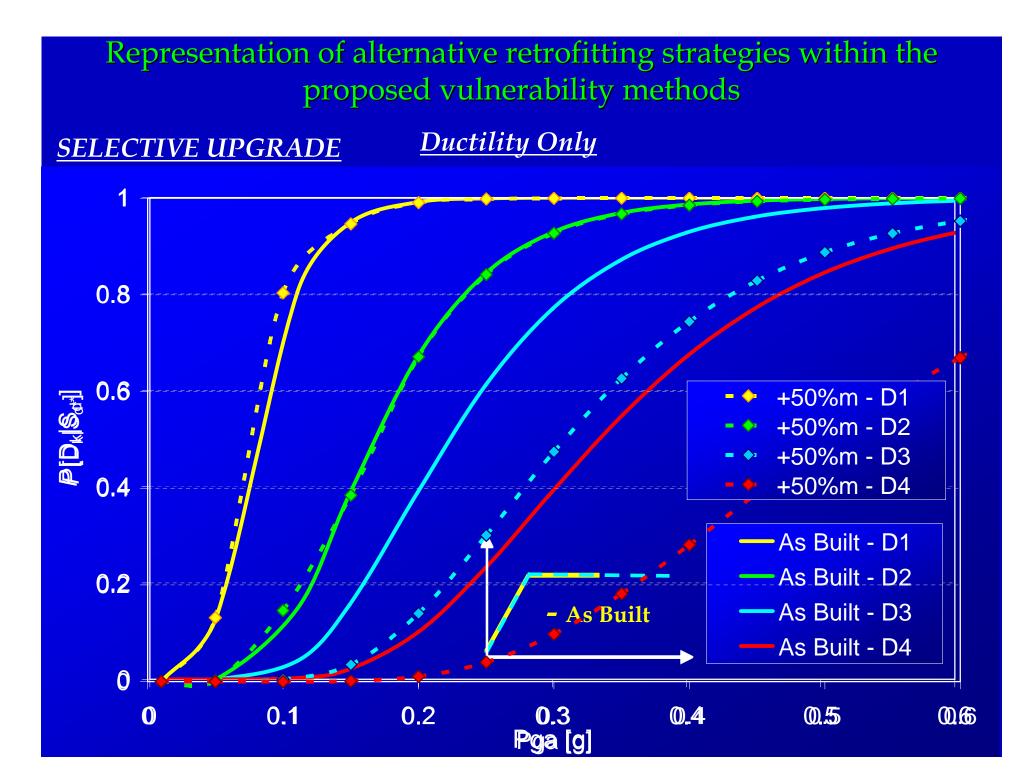

MULTI – LEVEL RETROFIT


alternative objectives targeted in terms of hierarchy of strength within the beam-column-joint

<u>Total Retrofit</u> i.e. <u>full upgrad</u>e by protecting all joint panel zones

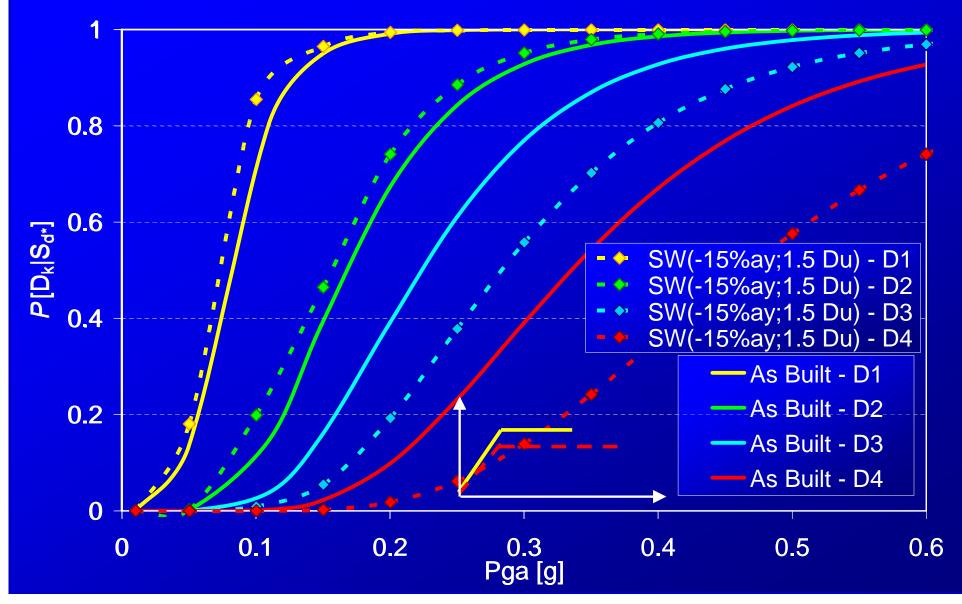
Partial Retrofiti.e.partial upgrade by protecting exterior joints

- More recent approaches
- supplemental damping devices
- advanced materials (FRP, SMA)
- diagonal metallic haunches



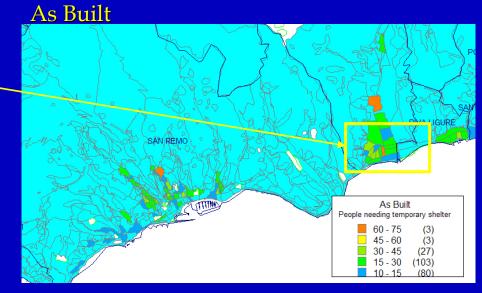
SELECTIVE UPGRADING

Independently upgrades stiffness, strength or ductility-only of a single member

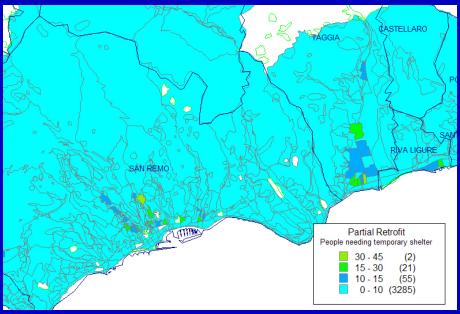

SELECTIVE WEAKENING

Re-enhancing strength and dissipation capacity

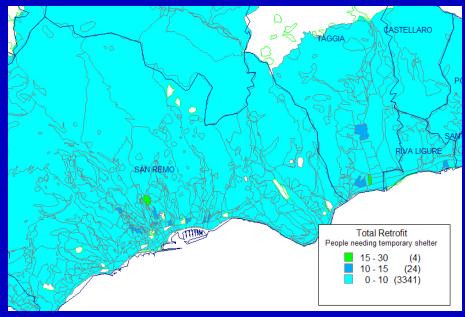



Representation of alternative retrofitting strategies within the proposed vulnerability methods

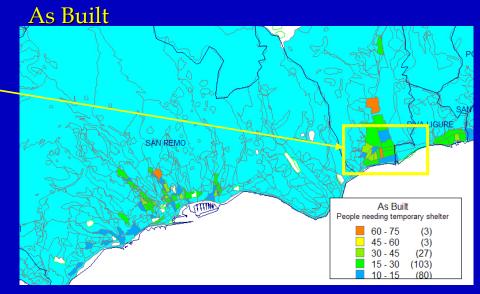
SELECTIVE WEAKENING



Damage SCENARIO: people needing temporary shelter



Partial Retrofit



Total Retrofit

Damage SCENARIO: people needing temporary shelter

F	Partial Retrof	it	Total Retrofit					
Ş	Damage scenario for the 1887 event		As Built				Partial Retrofit	Total Retrofit
		Building Typology	URM		<i>R.C.</i>		<i>R</i> . <i>C</i> .	<i>R.C</i> .
		Class of Age	All	<'71	'71-'81	<'71	<'71	<'71
e-m	BUILDINGS	Unfit for use	3775	<u>480</u>	135	6	<u>242</u>	<u>183</u>
		Collapsed	208	<u>15</u>	3	0	<u>4</u>	<u>2</u>
- A	PEOPLE	Requiring short term shelter	10317	<u>6129</u>	1118	89	<u>2999</u>	<u>2182</u>
A		Casualties and severely injured	182	<u>79</u>	9	0	<u>20</u>	<u>10</u>
		■ 10 - 15 (55) ■ 0 - 10 (3285)					U	- 10 (3341)

CONCLUSIONS

VULNERABILITY MODELS:

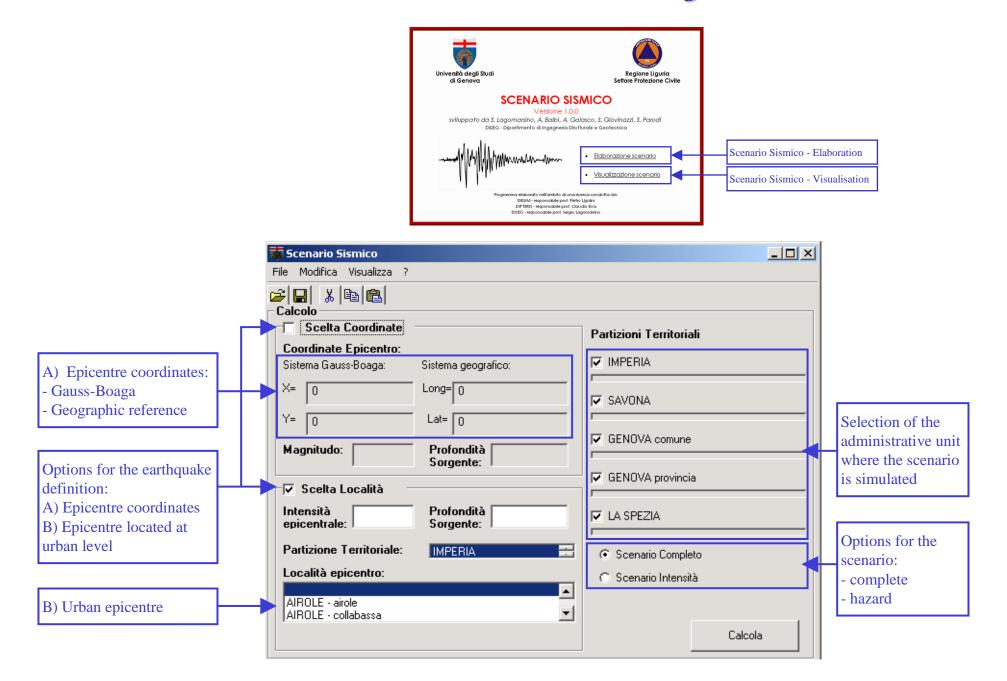
Macroseismic Method derived from EMS-98 macroseismic scale

- Mechanical Method for non-designed masonry building typologies for designed reinforced concrete buildings
- > Equivalent Macroseimic-Mechanical Approaches in order to reciprocally calibrate, to tune and to verify that reliable and comparable results are obtained with the two

DAMAGE SCENARIO:

- > The methods can be employed either with properly surveyed data or with statistical existent data of different origin and quality
- > A different uncertainty is associated with the vulnerability assessment and the consequent damage evaluation depending on the reliability of data available for the analysis
- > Easy implementation in a GIS environment

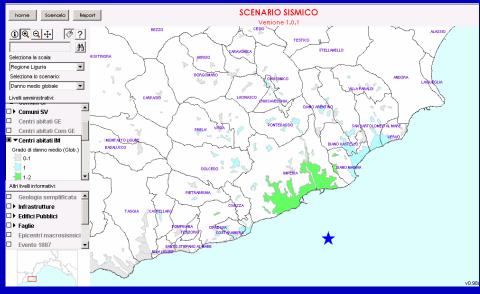
RISK MITIGATION AND RISK ANALYSIS APPLICATIONS:

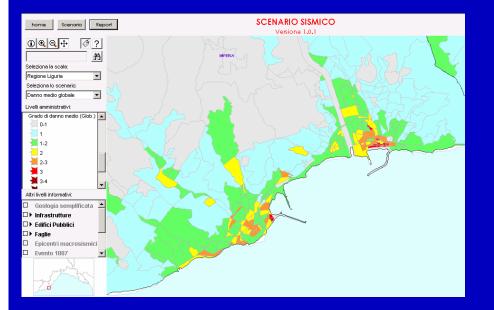

The use of these methods for risk mitigation purposes has become an effective tool

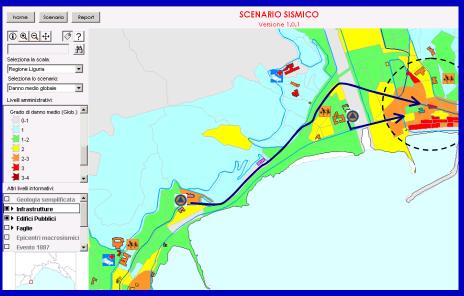
<u>GNDT Project</u> Earthquake Risk scenarios in Western Liguria and strategies for the preservation of historic centres

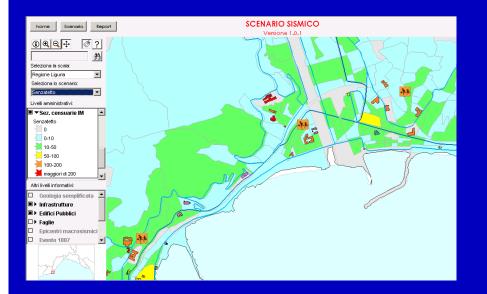
<u>Risk-UE Project</u> An advanced approach to earthquake risk scenarios with application to European towns Munich-RE Reinsurance Company applications of the proposed methods for insurance and reinsurance industry

Real–time damage scenarios tool for Liguria Region Civil Protection Department


"Scenario Sismico": a tool for real time damage scenarios


Macroseimic intensity hazard scenario home Scenario Report SCENARIO SISMICO SCENARIO SISMICO home Scenario Report Versione 1.0.1 Versione 1.0.1 ⓐ � � ∲ ? ⓐ Q ⊕ ∅? 秮 孡 Seleziona la scala Seleziona la scala ¥ Regione Liguria ¥ Regione Liguria Seleziona lo scenario: Seleziona lo scenario: • THE MILLO Intensità Intensità ivelli amministrativi. Livelli amministrativi: Intensità --▼Comuni GE 0-3 Intensità 4 0-3 5 4 📕 6 👅 в 9 📕 MAR LIGURE Altri livelli informativi: Altri livelli informativi: Edifici Pubblici . 🗆 Geologia semplificata 🔺 **▼**Faglie Infrastrutture lpotetica trasc Edifici Pubblici 🔨 Normale Faglie N Trascorrente Epicentri macrosismici N Trascorrente dx Evento 1887 -


Damage scenario in terms of mean damage grade



Damage scenario and identification of routes suitable for reaching high affected areas

Consequence scenario at census tract level: a) homeless people and buildings suitable for providing a temporary shelter, b) casualties and health facilities

