Has Earthquake Engineering Broken the Power Law?

Thomas Heaton

John Hall Brad Aagard Anna Olsen Georgia Cua Masumi Yamada

Overview

- Earthquake frequency vs. size statistics are power law ... the largest events dominate the action
- Global earthquake frequency vs. death statistics are also power law ... the rare events (also large) dominate the action
- Current state of the art in assessing earthquake risk suggests that most of the risk is from frequent moderatesized events (M ~ 7), but this is still an open question
- Where do these power laws come from, and has modern engineering "broken" the power law?
- If the power law still applies for damage and deaths, what is the best approach to minimize our losses?

1900-2004 Earthquake Deaths

¹/₂ of the deaths occurred in the 7 deadliest earthquakes

1900-2004 Earthquake Deaths

(frequency of occurrences) \propto (number of deaths in an event)^{-0.86}

20th Century's 100 largest disasters worldwide

Basic Engineering Issue

- Most of these deaths occurred in poorly designed or constructed buildings (with notable exceptions).
- Can modern building codes change the conclusion that most of the hazard comes from rare events?
- If the loss probability is really a power law, what is the best strategy to deal with this?

Why were these disasters power law?

- People live in spatial clusters (cities)
- The prevailing practice was inappropriate for the coming earthquake
- If people had known the consequences of their misjudgment, they would have done things differently
- Because of the tremendous loss, they "fixed" the problem with building codes

Current Building Code

- Current building codes are mostly prescriptive rules based on the building type and seismic zone.
- Codes have been developed by fixing deficiencies from past earthquakes.
- If you've got a good building code, who needs a seismologist?
- If the least frequent events pose the greatest risk, we may not have "learned the lessons yet.

Magnitude-dependent saturation of rock and soil sites (S-waves)

 Saturation important for M>5, when source dimensions become comparable to station distance, large amplitudes may induce yielding in soils

 Magnitude-dependent saturation appears to be primarily a source effect, since rock and soil are equally affected

From Georgia Cua

1906 earthquake rupture with large ground displacement. Notice that the farm buildings were largely intact.

John Hall's design of a 20-story steel MRF building

Designed to 1994 UBC zone 4, stiff soil 3.5 second natural period Includes weld fracture

£

top flange

top flange
$$\frac{\varepsilon_F}{\varepsilon_y} = 1 \text{ for } 40\%$$
$$= 10 \text{ for } 30\%$$
$$= 100 \text{ for } 30\%$$
bottom flange
$$\frac{\varepsilon_F}{\varepsilon_y} = 0.7 \text{ for } 20\%$$
$$= 11 \text{ for } 40\%$$
$$= 10 \text{ for } 20\%$$
$$= 50 \text{ for } 10\%$$
$$= 100 \text{ for } 10\%$$

Large displacements can overwhelm base isolation systems

- 2-meter displacement pulse as input for a simulation of the deformation of a 3-story base-isolated building (Hall, Heaton, Wald, and Halling
- The Sylmar record from the 1994 Northridge earthquake also causes the building to collide with the stops

Peak Ground Velocities

Bodega Bay

San Juan Bautista

Golden Gate

20-story brittle welds peak drift

Bodega Bay

San Juan Bautista Golden Gate

20-story perfect welds peak drift

Bodega Bay

San Juan Bautista

Golden Gate

Fix the Brittle Welds

Ft Ross with brittle welds Ft Ross with perfect welds

Faults Modeled

Day and others, 2005

Scenario Faults

- 1. Sierra Madre (7.0)
- 2. Santa Monica SW (6.3)
- 3. Hollywood (6.4)
- 4. Raymond (6.6)
- 5. Puente Hills I (6.8)
- 6. Puente Hills II (6.7)
- 7. Puente Hills (all) (7.1)
- 8. Compton (6.9)
- 9. Newport-Inglewood (6.9)
- 10. Whittier (6.7)

Puente Hills M 7.1

Ground displacement m

20-story peak drift in Puente Hills

Base Isolator peak displacment

Peak Ground Velocities [m/s] Puente Hills (All)

Peak Ground Velocities [m/s] TeraShake 1.2

Peak Inter-Story Dynamic Drift Ratio TeraShake 1.2 20-Stories with Good Welds

Peak Inter-Story Dynamic Drift Ratio TeraShake 1.2 20-Stories with Brittle Welds

Have we broken the Power Law?

- If power law catastrophes occur because we make systematic errors in our designs ("we were surprised," "just how many unknown faults are there in LA?"), then I suspect that we have **not** broken the power law
- Incomplete understanding leads to future systematic problems ... nonductile concrete, brittle welds, ...???
- Should we be doing something differently?

Designing for the Known

- Architect chooses the geometry of a design
- Define probability of forces that design will be subjected to
- Determine the size of elements that will satisfy statistical limits
- This is "performance based design"

Designing for the Unknown

- Determine the functional requirements of a structure
- Consider several geometries of the structure (different architectures)
- Determine the cost of different designs
- Assess the strengths and weaknesses of different designs
- Choose the design that is most robust

26 years ago...(Top) San Fernando Earthquake, February 9, severely damaged and later demolished Olive View Hospital, *photo credit Lloyd Cluff*. (Top inset) collapsed stair tower, *photo credit George Housner*, *NISEE-Caltech*. (Bottom) excellent structural performance of replacement Olive View Hospital after 1994 Northridge Earthquake, *photo credit Lloyd Cluff*.

1997

CINIT Oct 9 11:14 Seattle WA Spattal PSHA Deago, 1.0 sec SA, 0.5198 g, radius=260 km. Cities; vellow circles, Historical earthquakes, M>6; diamonds, hmax=2.6*10**-4

20-story steel-frame building subjected to a 2meter near-source displacement pulse (from Hall)

 triangles on the frame indicate the failures of welded column-beam connections (loss of stiffness).

The 20-story building before the C5 ground motion hits. The displacement pulse will be toward the left. At t=6 seconds, the ground is approaching its maximum horizontal displacement of 182 centimeters.

At t=7 seconds, the ground is returning to its original position, causing the building to "crack the whip."

This flexure creates a ripple of breaking welds that travels up the building.

By t=16 seconds, the building is hopelessly overbalanced and on its way to oblivion.

Other factors that may increase the building deformation

- There is no soil layer ... no bay mud
- The ground motions are heavily filtered at frequencies higher than ½ Hz
- Sub-shear rupture velocities may increase the strength of directivity pulses

Coordination Scheme

	UCB -	UCSB	CMU	URS	URS
S. Madre	EĻRŅS		С	(RG)	(AP)
S. Mon.	F,R		С		
HollyW	F,R			С	
Raym	F,R			С	
P.Hills6.8		F,R		С	
P.Hills6.7		F,R		С	
P.Hills7.1		F,R,R,S			С
Comp		F,R,S			С
N-I N.	R,S		F		С
Whit N.	R		F		С

- F = 6 3D scenarios
- C = single cross-check

- R = 1D rock reference simulation
- S = 1D basin-profile simulation

Maximum Inter-Story Dynamic Drift Ratio Composite 20-Stories with Good Welds

Maximum Inter-Story Dynamic Drift Ratio Composite 20-Stories with Brittle Welds

34° 00'

Normal Statistics (Gaussian)

• If events A, B, C, ... are independent and if each event has probability distribution

 P_A, P_B, P_C, \dots

Normal Statistics (Gaussian)

- If events A, B, C, ... are independent and if each event has probability distribution $P_A, P_B, P_C, ...$
- Then joint probability of A, B, C, ... is $P_A * P_B * P_C * ... \rightarrow \text{Gaussian}$

Normal Statistics (Gaussian)

- If events A, B, C, ... are independent and if each event has probability distribution $P_A, P_B, P_C, ...$
- Then joint probability of A, B, C, ... is $P_A * P_B * P_C * ... \rightarrow \text{Gaussian}$
- Statistics of auto accidents, grades, heart attacks
- Loss statistics sensitive to median behavior

Peak Inter-Story Dynamic Drift Ratio Puente Hills (All) 20-Stories with Good Welds

Peak Inter-Story Dynamic Drift Ratio Puente Hills (All) 20-Stories with Brittle Welds

Spectral Displacement [m] Puente Hills (All) T = 4s zeta = 0.1

